J. Social Biol. Struct. 1980 3, 317-329

Kinetics of metazoan mortality*

Angelos C. Economos
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In contrast to the well-known generalization that force of mortality and probability
of death in aging populations increase exponentially with age (‘Gompertz’s law’),
analysis of mortality kinetics data from a variety of metazoan species that have now
become available indicates that Gompertz’s law is only an approximation, not valid
over a certain terminal part of the lifespan, during which force of mortality levels
off. A previously introduced simple paradigm which describes mortality kinetics
more accurately is analyzed mathematically; its applicability and usefulness for
experimental gerontology are illustrated. It is shown mathematically that this
paradigm is equivalent with Gompertz’s law over the initial age range in which this
law is generally valid.

Introduction
Over one and a half centuries ago, a British actuary, Benjamin Gompertz, hypothesized that
force of morta]ityi increased exponentially with age in human populations of his era
(Gompertz, 1825). This hypothesis was subsequently accepted as a general ‘law’ of mortality
kinetics.

However, doubts as to the general applicability of Gompertz’s law have been occasionally
expressed (e.g. Henderson, 1915; Beard, 1959). Though an indefinitely increasing force of
mortality came to be considered synonymous to manifestation of population aging, some
investigators had probably observed, for isolated species, that some populations which
undoubtedly exhibited aging did not obey Gompertz’s law, e.g. the house fly, Musca
domestica (Rockstein, personal communication).

Unlike in human populations, where there is considerable childhood mortality, in
laboratory animal populations there is none, because of the selection process which discards
‘the genetically misfit individuals. The survivorship curve® of such populations generally has
an inverted-S shape. Such data can be fitted with the so-called ‘logistic curve’. This was first
attempted by Perks in 1932 (quoted by Beard, 1959), and other authors have used a logistic
curve for fitting particular survivorship data (e.g. Kunstyr & Leuenberger, 1975).

i An abstract (4ge 1, 74, 1978), and a short report (Economos, 1979) have appeared.

% Force of mortality in an aging population is defined as the ratio of the number of individuals dying
in a short age interval, over the number of survivors at the beginning of that interval.

§ A survivorship curve is obtained by plotting vs. age the percentage of an aging population that sur-
vives at each age.
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Some proposed mathematical models
From the definition of force of mortality M(¢) (see footnote I, p. 317) follows

1 ds@

M@ = — , 1
® sG) dr )
where 5(¢) is the survivorship as a function of age ¢.
Gompertz postulated that
M(t) = Moe™, €))

where M, is the (hypothetical) force of mortality at birth (¢t = 0) and a is a constant. From
equations (1) and (2) we obtain
s(f) = eMom(Mofa)e®t, ®3)

A ‘power law’, proposed by Rosenberg, Kemeny, Skurnick & Bandurski (1973) states that

M@t = At™, C))
where A, n are constants. From equations (1) and (4) follows
s(r) = T4t m Q)
The logistic equation for force of mortality has the form (Beard, 1959):
Bebt
M) = T a0 ©)

where B, D, b, are constants.
Finally, Fukuda and Yago (1976) have recently proposed the following equation for
survivorship:

1+e°
1+e @00

s() = )
However, equation (7) is equivalent to equation (6) as can be seen by substituting s(¢) from
equation (7) into equation (1):

beb be-ebt
M = 3z = —57,
(0= Gorye o MO = o
which is reduced to equation (6) by putting be™® = B and e~% = D. However, equation (7) is
less general than equation (6) because it imposes the additional restriction: B/D = b.
Various other equations have been proposed based on specific assumptions as, e.g., by
Johnson & Pavelec (1972) who described survivorship by the equation

s(t) = 1—-(1—e™*)?, ®

derived from the ‘multihit theory’ of radiation injury (k, p are constants).

Like the Gompertz (2) and power (4) equations, equation (8) has two parameters, one
less than the logistic equation (6); the latter equation is, therefore, in general superior to
two-parameter equations in fitting mortality data. Atlan, Miquel, Helmle & Dolkas (1976)
concluded that the ‘multihit equation’ represents certain mortality data of Drosophila
melanogaster better than either the Gompertz or the power law.
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Fig. 1. Mortality kinetics of three insect species represented by pairs of straight
lines on a semi-logarithmic plot, one for cumulative mortality (‘non-survivors’), the
other for survivorship (‘survivors’). The data are from Rockstein & Lieberman
(1959), Davies (1975) and Miquel, Lundgren, Bench & Atlan (1976); they were
obtained from a population of 4627 Musca domestica (maximum lifespan 50 days),
975 Nasonia fed Calliphora pupae (maximum lifespan 25 days), and 590 Drosophila

melanogaster (maximum lifespan 120 days) :

A simple model

A survey of recent gerontological literature indicated that practically all mortality data for a
great variety of metazoan species have been published in the usual form of free-drawn
survivorship curves. There have been only sporadic cases of a Gompertz function fitted on
the mortality data from species other than humans, but the validity of the Gompertzian
model in such cases was usually assumed rather than tested.

Using the published mortality data from a variety of species, we found that the Gompertz
equation generally fits mortality kinetics only in an initial part of the age range; force of
mortality usually levels off over the terminal 20-70 per cent of the lifespan (Economos,
1979). We also observed that if one plotted a survivorship curve on a semilogarithmic plot,
one would obtain a curve consisting of a convex part over a large part of the lifespan, and
ending in an apparently straight line segment over the terminal part of the lifespan. If one
did the same with the corresponding cumulative morality curve, which gives the total deaths
at each age, a complementary picture would be obtained: a long straight line segment
followed by a shorter convex part.

Therefore, it could be possible to represent mortality kinetics accurately with two
straight lines on a semi-logarithmic plot (see Fig. 1), one, the line of non-survivors, represent-
ing cumulative mortality in an initial age interval, the other, the line of survivors, representing



320 A. C. Economos

80 T T T T T m—
€]
80 3118 d Rats 1! -
148 d Mice ’
40} \ -
X ]
i %
L
" 20 .
E] \,
o \
=z
E o) o
S 8r
o
2 -
€ .
=2
a4 -
L ]
Non-survivors
2+ o Iy Y —
} Q 1 ! 1 L 1 L i

0 100200 300 400 500 600 700 800 900 I000
Age (days)

Fig. 2. Mortality kinetics in two small rodent populations; the data are from Ross,

Lustbader & Brass (1976) and Economos & Miquel (unpublished). The large irregu-

larity in the survivors line of mice in the interval 1000-1150days may be due to an

initial rise of room temperature from 23 °Cto25°C (hot summer) and subsequent

decrease to 22 °C; this small fluctuation in ambient temperature had a dramatic

effect on the survivorship of the remaining very old and thus temperature ‘sensitive’
mice

survivorship in the terminal age interval. The point of transition from one line to the other
corresponds to the inflection point on the cumulative mortality and survivorship curves
plotted using linear scales; this is also their intersection point when they are plotted on the
same linear plot. In large populations, like those of Fig. 1, the transition between the lines is
sharp, over a small age interval; furthermore, the fit of the data with the two straight lines is
remarkably accurate.! In relatively small populations, the transition between the lines is less
sharp and there is a small scatter of the data around the lines (see, e.g., Fig. 2).

The straight lines of non-survivors and survivors can be constructed rigorously by least-
square linear regression of the logarithms of cumulative mortality and survivorship vs. age,
after the transition point has been determined by plotting the cumulative mortality curve
and the corresponding survivorship curve on the same linear plot over a convenient middle
age interval. This transition point can be also determined approximately by plotting on a
semi-logarithmic plot both the initial part of the cumulative mortality curve and the terminal
part of the survivorship curve; the transition age is usually relatively evident from this plot.*

T The correlation coefficients from fitting the data with the two straight lines by a least-square linear
regression of log per cent population vs. age are close to one (see also ‘Addendum’).

¥ Occasionally, in small populations, the data points for the first few dead individuals or the last few
survivors (up to about five per cent of the population or less than 5 individuals), may be clearly off the
non-survivors and survivors straight lines and could be neglected in the construction of the straight lines
to avoid an apparent bias for those few data points (which gain disproportionate significance on a semi-
logarithmic plot).
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Fig. 3. Mortality kinetics of human populations. The data are from populations of

100,000 individuals, except for Northeastern U.S., 1910, for which ages at death of
1,981,892 individuals were analyzed

Fitting of mortality kinetics with this simple model was described previously for three
rodent species and four invertebrate species (Economos, 1979), for one insect species
(Drosophila melanogaster) at three different ambient temperatures, three oxygen tensions
and three radiation levels (Economos & Miquel, 1977), and for mice and Drosophila receiv-
ing dietary antioxidants which extend natural lifespan (Economos & Miquel, 1979) or life-
span of Drosophila under starvation (Economos, Burns, Miquel & Fleming, 1979). The last
two applications also demonstrated the usefulness of this model in experimental aging
research: the effect of an environmental condition or a dietary chemical on mortality
kinetics can be evaluated quantitatively using this model, because the effect is reflected in a
shift and/or change of slope of the lines of survivors and non-survivors.

Mortality data for various human populations, plotted according to the new paradigm, are
shown in Fig. 3. The data for Mexico, 1930 and US whites, 1940 are from Comfort (1956);
the data for Northeastern US, 1910 are from Henderson (1915); the data for Swedish
females, 1965 are from Kohn (1973); finally the data for US females, 1975 are from the
Vital Statistics Report (1977). The human data show some interesting aspects. The entire
mortality kinetics after about the period of lowest childhood mortality (around 15 years)
for both Northeastern United States, 1910 and Mexico, 1930 can be represented by a single
straight line, the line of cumulative mortality or line of ‘non-survivors’. US Whites, 1940 and
Swedish females, 1965 have mortality kinetics similar to other metazoan animals examined
earlier, though the survivors straight lines span a relatively short period; this straight line has
practically disappeared for US females, 1975.1

+ Note the deviation of the data points up to about age 45 years for the last three populations; this
lack of fit of the simple model in this age interval is shared by the Gompertzian model too.
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Fig. 4. Comparison of the new paradigm with Gompertz’s law in populations from

two species, the American male houseflies (4627) of Fig. 1 and 1492 English

thoroughbred mares fouled in 1875-1880. The force of mortality data (triangles)

were obtained from tables reported by Rockstein & Lieberman (1959) and Comfort
(1959)

Comparison with Gompertz’s law and logistic equation
In Fig.4 we have plotted mortality kinetics of two species, thoroughbred mares and male
houseflies, Musca domestica, at 25°C, using both the introduced simple paradigm and
according to Gompertz’s model. These two species represent two opposite extremes for our
purposes: thoroughbred mares have a survivors line that spans a short age interval, while the
survivors line of houseflies spans a large age interval. The following points emerge from this
comparison.

1. The proposed new paradigm fits mortality kinetics of both species accurately (the data
points fall almost exactly on the regression lines).

2. The Gompertz model fits only part of the mortality kinetics. Interestingly, the fit
‘breaks’ at the age at which our survivors straight line starts. This is clear in houseflies where
there are many data points in the survivors part of the lifespan. Because the remaining
population is small in this period, there is considerable variation around an average force of
mortality which tends to a (constant) steady state value.! Further, because we deal with a
continuous phenomenon, the transition from the non-survivors to the survivors straight line
is not abrupt and discontinuous, and this is reflected in the transition from exponentially

T The apparent larger variability in the data for force of mortality compared with the data for survivor-
ship in this age interval can be explained by taking into account that the scale for force of mortality is
multiplied by 100. Thus, e.g., two units on the scale correspond to two per cent or about 100 houseflies
for survivorship (in a total population of about 5000), while they correspond to 0.02 per cent or only one
fly for force of mortality.
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increasing to constant force of mortality. In the thoroughbred mares, there are only a few
data points in the survivors age range, and the large variability in the force of mortality in
this interval does not allow an unequivocal conclusion as to whether the Gompertzian line
fits the data over the entire lifespan or the fit ‘breaks’ at the age of transition from the non-
survivors to the survivors line. However, because the actual values of force of mortality in
this interval are consecutively 23.28, 20.54, 23.42, 22.22,40, 0, 25.00 and 28.57, it appears
again that force of mortality tends to level off in the terminal part of the lifespan. The
survivors line fits the data well in this age interval.

3. A Gompertz straight line can be fitted to the force of mortality data in the first period
of the lifespan, i.e. up to the point where our non-survivors straight line terminates. Interest-
ingly, the so obtained Gompertz straight line is parallel to the non-survivors straight line
(see Appendix).

4. A mathematical expression for the survivors straight line is:

s(t) = sprexp [~d t—1p)], ©)

where exp stands for exponential function, s, and ¢, are the survivorship and age at the
starting point of the survivors straight line, and &’ is the slope of this line. From the equation
of definition of force of mortality M(%) (equation (1) above) we obtain by substitution of
s(¢) with the expression given by equation (9):

M@) = d, (10)

i.e. force of mortality is constant in this age interval. Because the performed mathematical
operations are reversible, the opposite is also true, i.e. a constant force of mortality implies
an exponentially decreasing survivorship. This is in agreement with point 2 above.

5. From the logistic equation for force of mortality,

bt

MO = T )

B
MO = pr e

follows that for large ¢, such that e?* > 1/D,
B
M) =—
® D’

i.e. force of mortality tends to a constant steady state. Therefore, the survivors straight line
in the terminal age interval is an approximation of the logistic model in this interval.

6.1t can be shown that the non-survivors straight line in the initial age interval is an
approximation of the logistic curve in that interval, just as it was shown to be the case for
the survivors straight line in the terminal age interval. Thus, from the left of equations (11)
follows that, for a small 7, such that e < 1/D,

M(7) = Be® (12)

i.e. Gompertz’s law. Given also that, as shown in the appendix, the non-survivors line is
equivalent to Gompertz’s law in the initial age interval, it follows that the non-survivors
straight line is an approximation of the logistic curve in this interval.

7. A striking feature is exhibited by the mortality kinetics of four species of birds in
their natural habitat (Fig.5): the entire mortality kinetics can be represented by an
exponentially decreasing survivorship curve. That the mortality kinetics of many wild
species in their natural habitat has this form is well known. What is less well known is that
this form of mortality kinetics is not obligatory for wild animals as is demonstrated by
Fig. 6.
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Fig. 5. Mortality kinetics of (presumably) heavily predated populations; the data
are from Deevey (1947). Maximum lifespan of these bird species is 9-12 years

Frequency distribution of deaths
Plotting the derivative of cumulative mortality vs. age, one obtains the frequency distribution
of deaths. Assuming validity of the Gompertz law over the entire lifespan, the distribution
function or probability density function is, from equation (3),

dm(r) _  ds@) _
& dt

This function is not related to any of the known statistical distributions, but it has been
shown (Brown & Forbes, 1974) that from a normal distribution one can derive the Gompertz
law by approximation. However, frequency distribution of deaths as well as of many other
biological and technological characteristics does not resemble a normal curve (Economos,
Miquel, Ballard & Johnson, 1980); usually, the distribution curve is asymmetric and tends
more toward a lognormal, gamma or related form, as is true of probability density functions
for failure of manufactured products (see, e.g., Kapur & Lamberson, 1977).

Underlying mechanisms include influence of a characteristic by several factors which act
multiplicatively, or competition for a common resource between the individuals of a
population. With the simple paradigm introduced here, the corresponding frequency distri-
bution of deaths is non-Gaussian, asymmetric, resembling a negatively skewed lognormal
curve. This is compatible with a theory (Economos, 1978) which expressed mammalian life-
span as the product of a number of constitutional and life cycle parameters (frequency dis-
tribution of deaths or ages at death is, of course, identical with frequency distribution of
lifespans). Finally, it was shown elsewhere (Economos, 1979) that some manufactured
products have failure kinetics that can be accurately represented by the model introduced
here, as is for instance the case with copper fuses, relays and heat insulators.

= MyeMo - ot 13)
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Fig. 6. Mortality kinetics of three species (presumably not-heavily predated, but

with high initial mortality) in their natural habitats; the data are from Deevey

(1947). Maximum lifespan of the herring gull is 10 years, of the rotifer Floscularia
conifera is 10 days and of the Dall mountain sheep is 14 years

We have found only two (related) species whose frequency distribution of deaths
resembles a normal probability density function; these mortality data, plotted in Fig. 7 as in
previous figures, constitute an exception from the model introduced here. A pair of straight
lines was obtained only in the male Tribolium castaneum. The survivors lines of female
Tribolium confusum and Tribolium castaneum as well as both the survivors and non-
survivors lines for male Tribolium confusum are convex. In the same figure is shown the
area under the Gaussian frequency distribution curve for comparison. What causes this
deviation from the straight lines is not known. Because various environmental factors and
drugs or nutrients, applied on populations of animals post-natally, displace or change the
slope only (not the form) of the straight line pairs, this different form of the mortality
lines may be due to environmental conditions during development or a genetic idiosyncracy
of these beetle species.

Concluding remarks

Gompertz was an actuary and his interest in mortality kinetics was confined to human
populations, actually only the inhabitants of England at the beginning of the nineteenth
century. Data on other metazoan species were not available at that time and the idea of
applying the same mathematics to failure kinetics of manufactured products might have
been considered unusual or maybe unacceptable by his contemporaries.

Gompertz considered his hypothesis of exponential increase of force of mortality as a
fundamental law of human mortality based on the empirical agreement of the hypothesis
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Fig. 7. Mortality kinetics of males and females of two beetle species (200-500

individuals per group, maximum lifespan 400-500 days); the data are from Ducoff

(1975). The introduced paradigm fails to represent mortality kinetics in three of
the four groups (curved instead of straight lines)

with the data then available (Gompertz, 1825). During the last two or three decades that
experimental gerontology was largely expanded to include the study of a great variety of
metazoan species, it has been assumed that the same law of mortality would apply to other
metazoan species as well, so that the original hypothesis of Gompertz was now thought to
apply in general to all metazoans—apparently without careful and extensive testing. In this
paper we have documented the fact that the Gompertz law is not a universal law of
mortality, but only an approximation.

The finding that force of mortality levels off beyond a certain age in the examined species
may appear surprising because, traditionally, it was thought that in an aging population force
of mortality increases exponentially until all individuals have died. However, this expectation
was an assumption that would only be valid if Gompertz’s model were valid over the entire
lifespan. The data from many species show that this is not true, however. Instead, after a
certain species-characteristic age, force of mortality and probability of death cease to increase
exponentially with age and tend toward a (high) constant level for the remainder of the
lifespan. This conclusion is not an assumption, it is based on experimental findings.

It should be emphasized that the often repeated statement that aging necessarily results in
a continuously increasing force of mortality, would be correct if a population consisted of
identical individuals, whose weighted sum of capacities of physiological functions or health
state index (‘vitality’) in early maturity was the same. However, every population has a
certain, usually non-uniform, frequency distribution of vitalities of its individuals; this



Mortality kinetics 327

distribution influences the form of the frequency distribution of deaths and consequently
population mortality kinetics. If the frequency distribution of vitalities were changed, e.g.
by eliminating from the population the weak, sick or unfit individuals by means of a severe
but non-invasive physical examination, the mortality kinetics would be affected accordingly
(Economos & Miquel, 1979). Furthermore, if the frequency distribution were such that the
number of individuals with the highest vitality score decreased exponentially as a function of
that score, then force of mortality in a terminal age interval would level off, although the
population still ages in that interval (Economos & Miquel, 1979).F

A practical advantage of the described method of representation of mortality kinetics is
its simplicity and ease of use; little more effort or time is required for construction of the
two straight lines than for the usual graphic representation of mortality kinetics by a hand-
drawn curve. Only very simple statistics (:linear regression) are needed. Yet, mortality
kinetics are accurately described and in a way that the effect of an environmental factor,
nutrient or drug, can be quantitated, namely, in terms of changes in the relative positions
and slopes of the straight lines.
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Appendix
Equivalence of Gompertz’s law with the non-survivors straight line
A mathematical expression for the non-survivors line (see Fig. 4) is
m(t) = mg exp (at) (Al)

where m(¢) is cumulative mortality, mq is cumulative mortality at # = 0 and a is the slope of
the non-survivors line on the semi-logarithmic plot. From

m@)+s@®) =1 (A2)
follows
s(®) = 1—mg exp (ar). (A3)
Guided by the polynomial expansion of the exponential function
x , x> x3
= 14+E4 4 +... A4
CerTt st (44)
we rewrite equation (A3) as follows:
(mol1 —exp @)])* | (mol1—exp (ar)])?
+mo+ + +..
$(O)+ mo 12 123
- 2
= 1—mg exp (at) + mo+ (mol 1 — exp (@n)]) +.... (AS)

1.2
The right-hand side of equation (AS) can be rewritten as

1+ mo[1 — exp (at)] + (mo[1 — exp (ar)])? +
1 1.2 e

which, according to equation (A4), is equal to
exp (mo[ 1 — exp (an)]). (A6)

It can be shown that the quantity added to the left side of equation (A3), see equation (AS),
i.e. the quantity

(mol1 —exp @)])* | (mo[1 —exp (@)])®
12 123

is small compared with the values of s() in the age interval spanned by the non-survivors
line. This can be seen by calculating Q in the examples of Fig. 4; m, has the value 0.007 for
thoroughbred mares (an unusually high value) and the value 0.001 for houseflies (a value in
the usual range). The value of Q is respectively (approximately) 0.08 and 0.07, calculated
for the age where the non-survivors line terminates, i.e. the age at which this quantity attains
its largest value. Compared with the value of survivorship at the same age, which is roughly
0.6, this error is therefore rather small, about 10-13 per cent; this error decreases rapidly
toward zero age.

By ignoring quantity Q from the left side of equation (A5) and replacing the right side of
the same equation by equation (A6), we obtain

s(t) = exp (mo[1— exp (an)]), (A8)

Ins(f) = my[1 — exp (a)]. (A9)

Q = me+ +... (A7)

from which we get
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Substituting equation (A8) in the equation of definition of force of mortality, we finally
obtain

M(t) = mya exp (a?), (A10)
which is the Gompertz law. At the same time, from equations (A1) and (A10) follows that
the Gompertz straight line is parallel to our non-survivors straight line (they have the same
slope @), a conclusion justified by the data of Fig. 4 in both thoroughbred mares and male
houseflies.

The above mathematical analysis has demonstrated that Gompertz’s law is valid in the age
interval spanned by the non-survivors straight line, i.e. in the interval where cumulative
mortality is increasing exponentially with age, and that the Gompertz relation can be derived
analytically from the mathematical expression of the non-survivors straight line. We shall
show that the opposite is also true, i.e. in the age interval where Gompertz’s law is valid, the
non-survivors line is by necessity a straight line, that is, cumulative mortality increases
exponentially with age. The proof is straightforward; it actually consists of going through
equations (A3)-(A10) backwards, starting from equation (A10), i.e. the Gompertz relation

M%) = mgaexp (a?),
or equivalently, using the equation of definition of M(¢),

_1 4@ _
@ ar = mga exp (at),
which can be rewritten as
ds() _
@) = —mga exp (at) dt. (Al1)

Integration of equation (A11) between ¢ = 0 and ¢ gives
In s(£) = mo[1— exp (ar)],

which is identical to equation (A9). From this, equation (A8) follows directly, from which
by expansion in series and approximation as with the proof of the direct statement above
(equations (A4)-(A6)), equation (A3) is obtained as an expression of survivorship, where-
from follows the expression of cumulative mortality as an exponential function of age.

Addendum

An abstract has appeared recently (Richie, J. P. & Lang, C. A. (1980). Fed. Proc. 39, 604) in
which the present model was validated using data from mosquito populations cultured under
standard laboratory conditions. For their analysis, the authors made the assumption that the
transition from the line of non-survivors to the line of survivors takes place at about the age
of median survival (50 per cent mortality). However, this may be approximately true of
insects (e.g. see the data of Fig. 1) and mosquitoes in particular, but is not true in general
(e.g. mouse data in Fig. 2 and human data, Fig. 3); rather, the transition age should be deter-
mined for each studied population, for instance (as mentioned in the text) by determining
the crossing point of the survivorship and cumulative mortality curves plotted on the same
plot using linear scales. The authors of the abstract stated that the present model ‘. . . con-
sistently yielded closer fits with the data with coefficients of determination (r?) ranging
from 0.9-1.0, while the Gompertz method gave lower values ranging from 0.5-0.95°. They
concluded that the model . . . is a valid, rigorous and simple method for the study of life-
span profiles’.



