
File: {Elsevier}Conn/Revises-I/3d/P369391-Ch05.3d
Creator: sunil/cipl-u1-3b2-6.unit1.cepha.net Date/Time: 7.12.2005/2:04pm Page: 45/68

5

Models of Systems Failure in Aging

Leonid A. Gavrilov and Natalia S. Gavrilova

Mathematical models of systems failure are critically
important for understanding the mechanisms of aging

because aging of organisms is associated with increased
risk of failure of its physiological systems.

Theoretical analysis of systems failure in aging leads
naturally to apply the existing general theory of systems

failure, which is also known as the reliability theory.
Reliability-theory approach to biological aging is useful
for three reasons. (1) It provides a useful scientific

language (definitions and cross-cutting principles) help-
ing to create a general theoretical framework for
organizing numerous and diverse observation on aging

into a coherent picture. This is very important for
researchers, because it helps them to understand each
other despite a disruptive specialization of aging studies.
(2) It allows researchers to develop a scientific intuition

and understanding of the main principles of the aging
process by considering simplified mathematical models
of systems failure, having some general features of real

aging organisms. (3) It helps to generate and test specific
predictions on age-related dynamics of systems failure,
and to get deeper insights in the mechanisms of aging by

more creative analysis of already collected data.
This chapter reviews the existing theoretical relia-

bility models and approaches, which help us to under-

stand the mechanisms and age-dynamics of systems
failure. Empirical observations on systems failure in
aging are also reviewed (the Gompertz and Weibull
failure laws, the compensation law of systems failure,

and the late-life failure rate leveling-off), and are
theoretically explained through the observed decline in
system’s redundancy with age. The causes of failure rate

increase with age are discussed and explained using five
simple mathematical models of systems failure in aging
as an illustration.

Introduction

This introductory-overview chapter sets a stage for

introducing theoretical models of systems failure in

aging. Mathematical models of systems failure are

important for the studying of human aging, because

aging is associated with increased risk of failure in human

physiological systems. Theoretical analysis of systems

failure in aging invites us to consider the general theory

of systems failure known as reliability theory (Barlow

and Proshan, 1975; Barlow et al., 1965; Gavrilov, 1978;

Gavrilov and Gavrilova, 1991, 2001, 2003a, 2004a, 2005;

Gavrilov et al., 1978).

Reliability theory was historically developed to

describe failure and aging of complex electronic (military)

equipment, but the theory itself is a very general theory

based on mathematics (probability theory) and systems

approach (Barlow and Proschan, 1975; Barlow et al.,

1965). It may therefore be useful to describe and under-

stand the aging and failure of biological systems too.

Reliability theory may be useful in several ways: first, by

providing a kind of scientific language (definitions and

cross-cutting principles), which helps to create a logical

framework for organizing numerous and diverse observa-

tions on aging into a coherent picture. Second, it helps

researchers to develop an intuition and an understanding

of the main principles of the aging process through

consideration of simple mathematical models, having

some features of a real world. Third, reliability theory is

useful for generating and testing specific predictions, as

well as deeper analyses of already collected data. The

purpose of this chapter is to review the theoretical reliabi-

lity models and approaches, which help to understand the

mechanisms and dynamics of systems failure in aging.

Reliability Approach to System’s Failure

in Aging

Reliability theory is a body of ideas, mathematical

models, and methods directed to predict, estimate,

understand, and optimize the lifespan and failure distri-

butions of systems and their components (adapted from

Barlow and Proschan, 1975). Reliability theory allows

researchers to predict the age-related failure kinetics

for a system of given architecture (reliability structure)

and given reliability of its components.

DEFINITIONS OF SYSTEM’S FAILURE AND AGING

The concept of failure is important to the analysis of

system’s reliability. In reliability theory failure is defined

as the event when a required function is terminated

(Rausand and Houland, 2003). In other words, failure

is such an outcome when the system deviates from
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optimistically anticipated and desired behavior (‘‘fails’’).

Failures are often classified into two groups:

1. degradation failures, where the system or com-
ponent no longer functions properly, and

2. catastrophic or fatal failures—the end of system’s
or component’s life.

Good examples of degradation failures in humans
would be an onset of different types of health impair-

ments, diseases, or disabilities, while catastrophic or fatal

failures obviously correspond to death. The notions of

aging and failure are related to each other in the following

way: when the risk of failure outcomes increases with age
(‘‘old is not as good as new’’)—this is aging by definition.

Note that according to reliability theory, aging is not just

growing old; instead aging is a degradation leading to

failure (adverse health outcomes)—becoming sick,
disabled, frail and dead. Therefore, from a reliability-

theory perspective the notion of ‘‘healthy aging’’ is an

oxymoron like a healthy dying, or a healthy disease. More

appropriate terms instead of ‘‘healthy aging’’ or ‘‘aging

well’’ would be a delayed aging, postponed aging, slow
aging, arrested aging, or negligible aging (senescence).

Because the reliability definition of biological aging
is linked to health failures (adverse health outcomes,

including death), aging without diseases is just as

inconceivable as dying without death. Diseases and

disabilities are an integral part (outcomes) of the aging

process. Not every disease is related to aging, but every
progression of disease with age has some relevance to

aging: aging is a ‘‘maturation’’ of diseases with age.

Note that a system may have an aging behavior for one
particular type of failure, but it may remain to be as good

as new for some other type of failure. Thus the notion of

aging is outcome-specific—it requires specifying for which

particular type of failure (or group of failures) the system
deteriorates. Consequently, the legitimate antiaging

interventions may be outcome-specific too, and limited

to postponing some specific adverse health outcomes.

Aging is likely to be a summary term for many different

processes leading to various types of degradation failures,
and each of these processes deserves to be studied and

prevented.

BASIC FAILURE MODELS

Reliability of the system (or its component) refers to its

ability to operate properly according to a specified

standard (Crowder et al., 1991). Reliability is described

by the reliability function S(x), which is the probability
that a system (or component) will carry out its mission

through time x (Rigdon and Basu, 2000). The reliability

function (also called the survival function) evaluated at

time x is just the probability P, that the failure time X,

is beyond time x. Thus, the reliability function is defined
in the following way:

SðxÞ ¼ PðX > xÞ ¼ 1� PðX � xÞ ¼ 1� FðxÞ

where F(x) is a standard cumulative distribution function

in the probability theory (Feller, 1968). The best illustra-

tion for the reliability function S(x) is a survival curve

describing the proportion of those still alive by time x

(the lx column in life tables).
Failure rate, �(x), or instantaneous risk of failure, also

called the hazard rate, h(x), or mortality force is defined as

the relative rate for reliability function decline:

�ðxÞ ¼ �
dSx

Sxdx
¼
�dlnSx

dx

In those cases when the failure rate is constant (does

not increase with age), we have nonaging system (compo-

nent) that does not deteriorate (does not fail more often)

with age:

�ðxÞ ¼ � ¼ const

The reliability function of nonaging systems (compo-

nents) is described by the exponential distribution:

SðxÞ ¼ S0e
��x

This failure law describes ‘‘lifespan’’ distribution of

atoms of radioactive elements, and, therefore, it is often

called an exponential decay law. Interestingly, this failure

law is observed in many wild populations with high

extrinsic mortality (Finch, 1990; Gavrilov and Gavrilova,

1991). This kind of distribution is observed if failure

(death) occurs entirely by chance, and it is also called

a ‘‘one-hit model,’’ or a ‘‘first order kinetics.’’ The non-

aging behavior of a system can be detected graphically

when the logarithm of the survival function decreases

with age in a linear fashion.
Recent studies found that at least some cells in the

aging organism might demonstrate nonaging behavior.

Specifically, the rate of neuronal death does not

increase with age in a broad spectrum of aging-related

neurodegenerative conditions (Heintz, 2000). These

include 12 different models of photoreceptor degenera-

tion, ‘‘excitotoxic’’ cell death in vitro, loss of cerebellar

granule cells in a mouse model, and Parkinson’s and

Huntington’s diseases (Clarke et al., 2000). In this range

of diseases, five different neuronal types are affected.

In each of these cases, the rate of cell death is best fit by

an exponential decay law with constant risk of death

independent of age (death by chance only), arguing

against models of progressive cell deterioration and

aging (Clarke et al., 2000, 2001a). An apparent lack of

cell aging is also observed in the case of amyotrophic

lateral sclerosis (Clarke et al., 2001a), retinitis pigmentosa

(Burns, 2002; Clarke et al., 2000, 2001a; Massof, 1990)

and idiopathic Parkinsonism (Calne, 1994; Clarke et al.,

2001b; Schulzer et al., 1994). These observations corre-

spond well with another observation that ‘‘an impressive

range of cell functions in most organs remain unimpaired

throughout the life span’’ (Finch, 1990, p. 425), and these

unimpaired functions might reflect the ‘‘no-aging’’ prop-

erty known as ‘‘old as good as new’’ property in survival
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analysis (Klein and Moeschberger, 1997, p. 38). Thus we

come to the following fundamental question about the

origin of aging: How can we explain the aging of a system
built of nonaging elements? This question invites us to

think about the possible systemic nature of aging and to
wonder whether aging may be a property of the system as

a whole. We would like to emphasize the importance of

looking at the bigger picture of the aging phenomenon in
addition to its tiny details, and we will suggest a possible

answer to the posed question in this chapter.
If failure rate increases with age, we have an aging

system (component) that deteriorates (fails more often)
with age. There are many failure laws for aging systems,

and the most famous one in biology is the Gompertz law

with exponential increase of the failure rates with age
(Finch, 1990; Gavrilov and Gavrilova, 1991; Gompertz,

1825; Makeham, 1860; Strehler, 1978):

�ðxÞ ¼ Re�x

An exponential (Gompertzian) increase in death rates
with age is observed for many biological species including
fruit flies Drosophila melanogaster (Gavrilov and
Gavrilova, 1991), nematodes (Brooks et al., 1994;
Johnson, 1987, 1990), mosquitoes (Gavrilov, 1980),
human lice, Pediculus humanus (Gavrilov and Gavrilova,
1991), flour beetles, Tribolium confusum (Gavrilov and
Gavrilova, 1991), mice (Kunstyr and Leuenberger, 1975;
Sacher, 1977), rats (Gavrilov and Gavrilova, 1991), dogs
(Sacher, 1977), horses (Strehler, 1978), mountain sheep
(Gavrilov, 1980), baboons (Bronikowski et al., 2002) and,
perhaps most important, humans (Finch, 1990; Gavrilov
and Gavrilova, 1991; Gompertz, 1825; Makeham, 1860;
Strehler, 1978). According to the Gompertz law, the
logarithm of failure rates increases linearly with age. This
is often used in order to illustrate graphically the validity
of the Gompertz law—the data are plotted in the semilog
scale (known as the Gompertz plot) to check whether the
logarithm of the failure rate is indeed increasing with age
in a linear fashion.

For technical systems one of the most popular
models for failure rate of aging systems is the Weibull

model, the power-function increase in failure rates with
age (Weibull, 1939):

�ðxÞ ¼ �x� for x � 0; where �; � > 0

This law was suggested by Swedish engineer and

mathematician W. Weibull in 1939 to describe the
strength of materials (Weibull, 1939). It is widely used

to describe aging and failure of technical devices (Barlow
and Proschan, 1975; Rigdon and Basu, 2000; Weibull,

1951), and occasionally it was also applied to a limited

number of biological species (Eakin et al., 1995; Hirsch
and Peretz, 1984; Hirsch et al., 1994; Janse et al., 1988;

Ricklefs and Scheuerlein, 2002; Vanfleteren et al., 1998).
According to the Weibull law, the logarithm of failure

rate increases linearly with the logarithm of age with

a slope coefficient equal to parameter �. This is often

used in order to illustrate graphically the validity of

the Weibull law—the data are plotted in the log–log scale
(known as the Weibull plot) to check whether the
logarithm of the failure rate is indeed increasing with

the logarithm of age in a linear fashion.
We will show later that both the Gompertz and the

Weibull failure laws have a fundamental explanation

rooted in reliability theory. Therefore it may be interesting
and useful to compare these two failure laws and their
behavior.

Figure 5.1a presents the dependence of the logarithm

of the failure rate on age (Gompertz plot) for the
Gompertz and the Weibull functions.

Note that in Figure 5.1a this dependence is strictly

linear for the Gompertz function (as expected), and
concave-down for the Weibull function. So the Weibull
function looks like decelerating with age if compared

to the Gompertz function.
Figure 5.1b presents the dependence of the logarithm

of the failure rate on the logarithm of age (Weibull plot)

for the Gompertz and theWeibull functions. Note that this
dependence is strictly linear for the Weibull function
(as expected), and concave-up for the Gompertz function.
So the Gompertz function looks like the accelerating

one with the logarithm of age if compared to the Weibull
function.

There are two fundamental differences between the

Weibull and the Gompertz functions.
First, the Weibull function states that the system is

immortal at starting age—when the age X is equal to zero,

the failure rate is equal to zero too, according to the
Weibull formula. This means that the system should be
initially ideal (immortal) in order for the Weibull law to be

applicable to it. On the contrary, the Gompertz function
states that the system is already vulnerable to failure at
starting age—when the age X is equal to zero, the failure
rate is already above zero, equal to parameter R in the

Gompertz formula. This means that the partially
damaged systems having some initial damage load are
more likely to follow the Gompertz failure law, while the

initially perfect systems are more likely to follow the
Weibull law.

Second, there is a fundamental difference between the

Gompertz and the Weibull functions regarding their
response to misspecification of the starting age (‘‘age
zero’’). This is an important issue, because in biology
there is an ambiguity regarding the choice of a ‘‘true’’ age,

when aging starts. Legally, it is the moment of birth,
which serves as a starting moment for age calculation.
However, from a biological perspective there are reasons

to consider a starting age as a date either well before the
birth date (the moment of conception in genetics, or a
critical month of pregnancy in embryology), or long after

the birth date (the moment of maturity, when the
formation of a body is finally completed). This uncer-
tainty in starting age has very different implications for

data analysis with the Gompertz or the Weibull functions.
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For the Gompertz function a misspecification of a starting

age is not as important, because the shift in the age scale
will still produce the same Gompertz function with the
same slope parameter �. The data generated by the

Gompertz function with different age shifts will all be
linear and parallel to each other in the Gompertz plot.
The situation is very different for the Weibull function—it

is linear in the Weibull plot for only one particular
starting age, and any shifts in a starting age produce

a different function. Specifically, if a ‘‘true’’ starting age is
larger than assumed, then the resulting function will be
a nonlinear concave-up curve in the Weibull plot

indicating model misspecification and leading to a bias
in estimated parameters. Thus, researchers choosing the
Weibull function for data analysis have first to resolve an

uneasy biological problem—at what age does aging start?
An alternative graceful mathematical solution of

this problem would be to move from a standard two-
parameter Weibull function to a more general three-
parameter Weibull function, which has an additional

‘‘location parameter’’ � (Clark, 1975):

�ðxÞ ¼ �ðx� �Þ�; x4 �; and equal to zero otherwise

Parameters of this formula, including the location
parameter �, could be estimated from the data through
standard fitting procedures, thus providing a computa-

tional answer to a question ‘‘when does aging start?’’
However, this computational answer might be shocking

to researchers, unless they are familiar with the concept
of initial damage load, which is discussed elsewhere
(Gavrilov and Gavrilova, 1991; 2001; 2004b; 2005).

In addition to the Gompertz and the standard two-
parameter Weibull laws, a more general failure law was
also suggested and theoretically justified using the systems

reliability theory. This law is known as the binomial failure

law (Gavrilov and Gavrilova, 1991; 2001; 2005), and it

represents a special case of the three-parameter Weibull

function with a negative location parameter:

�ðxÞ ¼ �ðx0 þ xÞ�

The parameter x0 in this formula is called the initial

virtual age of the system, IVAS (Gavrilov and Gavrilova,

1991; 2001; 2005). This parameter has the dimension of

time and corresponds to the age by which an initially ideal

system would have accumulated as many defects as a real

system already has at the starting age (at x ¼ 0).

In particular, when the system is initially undamaged,

the initial virtual age of the system is zero and the failure

rate grows as a power function of age (the Weibull law).

However, as the initial damage load is increasing, the

failure kinetics starts to deviate from the Weibull law,

and eventually it evolves to the Gompertz failure law

at high levels of initial damage load. This is illustrated

in Figure 5.2, which represents the Gompertz plot for the

data generated by the binomial failure law with different

levels of initial damage load (expressed in the units of

initial virtual age).

Note that as the initial damage load increases the

failure kinetics evolves from the concave-down curves

typical to the Weibull function, to an almost linear

dependence between the logarithm of failure rate and age

(the Gompertz function). Thus, biological species dying

according to the Gompertz law may have a high initial

damage load, presumably because of developmental

noise, and a clonal expansion of mutations occurred in

the early development (Gavrilov and Gavrilova, 1991;

2001; 2003a; 2004b).
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Figure 5.1. Plots of Gompertz and Weibull functions in different coordinates. (a) semilog (Gompertz) coordinates, (b) log-log
(Weibull) coordinates. Source: Gavrilov and Gavrilova, 2005.
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SYSTEM’S FAILURE AND RELIABILITY STRUCTURE

A branch of reliability theory, which studies reliability of

an entire system given the reliability of its components

and components’ arrangement (reliability structure), is

called system reliability theory (Rausand and Hoyland,

2003). System reliability involves the study of the overall

performance of systems of interconnected components.

The main objective of system reliability is the construc-

tion of a model that represents the times-to-failure of

the entire system based on the life distributions of the

components, from which it is composed. Consideration

of some basic ideas and models of the system reliability

theory is important because living organisms may be

represented as structured systems comprised of organs,

tissues and cells.

System reliability theory tells us that the component

arrangement strongly affects the reliability of the whole

system. The arrangement of components that are impor-

tant for system reliability is also called reliability structure

and is graphically represented by a schema of logical

connectivity. It is important to understand that the model

of logical connectivity is focused only on those compo-

nents that are relevant for the functioning ability of the

system. Components that do not play a direct role in

the system’s reliability usually are not included in the

analyzed reliability structure (Rausand and Hoyland,

2003). For example, organs of vision are not included in

the reliability structure of living organisms if death is the

only type of failure to be analyzed (complete failure of

vision does not cause an immediate death of the

organism). On the other hand, if disability is the type of

failure under consideration, then organs of vision

should be included in the schema of reliability structure.

Therefore, reliability structure does not necessarily

reflect a physical structure of the object.
There are two major types of components arrangement

(connection) in the system: components connected in

series and components connected in parallel (Rausand

and Hoyland, 2003). Here we consider a simple system

of n statistically independent components, where failure

of one component does not affect the failure rate of

other components of the system.

Components connected in series

For a system of n independent components connected

in series, the system fails if any one of the components

fails, as in electrical circuits connected in series. Thus,

failure of any one component results in failure of the

whole system as in the Christmas tree lighting chains.

Figure 5.3a shows a schema of the logical connectivity

of the system in series.

This type of system is also called a weakest-link sys-

tem (Ayyub and McCuen, 2003). In living organisms

many organs and tissues (heart, lung, liver, brain) are

vital for the organism’s survival—a good example of

series-connected components. Thus, the series connection

means a logical connectivity, but not necessarily a

physical or anatomical one.
The reliability of a system in series (with independent

failure events of the components), Ps, is a product of

reliabilities of its components:

Ps ¼ p1p2 . . . pn

where p1 . . . pn are reliabilities of the system’s compo-

nents. This formula explains why complex systems with

many critical components are so sensitive to early failures

of their components.

For example, for a system built of 458 critical

components, the initial period of the components’ life

when their cumulative risk of failure is only 1%

corresponds to the end of the system’s life when 99% of

systems have already failed. This difference between the

lifetimes of systems and the potential lifetimes of their

components is increasing further with system complexity

(numbers of critical components). Therefore, the early

failure kinetics of components is so important in

determining the failure kinetics of a complex system for

its entire life.

The failure rate of a system connected in series is the

sum of failure rates of its components (Barlow et al., 1965):

�s ¼ �1 þ �2 þ �i � � � þ �n

If the failure rates of all components are equal, then
the failure rate of the system with n components is n�.
It follows from this formula that if the system’s

Figure 5.2. Failure kinetics of systems with different levels of
initial damage. Dependence 1 is for initially ideal system (with no
damage load). Dependence 2 is for system with initial damage
load equivalent to damage accumulated by 20-year-old system.
Dependencies 3 and 4 are for systems with initial damage load
equivalent to damage accumulated respectively by 50-year-old and
100-year-old system. Source: Gavrilov and Gavrilova, 2005.
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components do not age (�i ¼ const), then the entire
system connected in series does not age either.

Components connected in parallel

A parallel system of a n independent components fails

only when all the components fail (as in electrical circuits

connected in parallel). The logical structure of parallel

system is presented in Figure 5.3b.

An example of a parallel system is a system with

components all performing an identical function. This

function will be destroyed only in the case when all the

components fail. The number of additional components in

parallel structure with one and the same function is called

the redundancy or reserve of the system. In living

organisms vital organs and tissues (such as liver, kidney,

or pancreas) consist of many cells performing one and

the same specialized function.

...(a)

(b)

(c)

(d)

Figure 5.3. Logical schemas of systems with different types of elements connectivity: (a) system connected in series, (b) system connected in
parallel, (c) series-parallel system, (d) series-parallel system with distributed redundancy, Source: Gavrilov and Gavrilova, 2005.
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For a parallel system with n independent components

the probability of the system’s failure, Qs, is the product

of the probabilities of failure for its components, qi:

Qs ¼ q1q2 . . . qn

Hence the reliability of a parallel system, Ps, is related

to the reliabilities of its components in the following way:

Ps ¼ 1�Qs ¼ 1� 1� p1ð Þ 1� p2ð Þ . . . 1� pnð Þ

The reliability of a parallel system with components
of equal reliability, p, is

Ps ¼ 1� 1� pð Þ
n

What is very important is the emergence of aging in

parallel systems—a parallel system is aging even if it is

built of nonaging components with a constant failure rate
(see more details in the section on causes of failure rate

increase with age).
In a real world most systems are more complex than

simply series and parallel structures, but in many cases

they can be represented as combinations of these
structures.

More complex types of reliability structure

The simplest combination of the two reliability structures
is a series–parallel system with equal redundancy shown

in Figure 5.3c.
A general series–parallel system is a system of

m subsystems (blocks) connected in series, where each

block is a set of n components connected in parallel.
It turns out that even if the components themselves are

not aging, the system as a whole has an aging behavior—

its failure rate grows with age according to the Weibull
law and then levels off at advanced ages (Gavrilov and

Gavrilova, 1991; 2001, 2003a). This type of system is

important to consider, because a living organism can be
presented as a system of critical organs and tissues

connected in series, while each organ consists of special-
ized cells connected in parallel. A reliability model for

this type of system is described in more detail in the

section on causes of failure rate increase with age.
Another type of reliability structure, a series–parallel

system with distributed redundancy, was introduced by
Gavrilov and Gavrilova in 1991 (Gavrilov and Gavrilova,

1991; 2001). The series-connected blocks of this system

have nonequal redundancy (different numbers of elements
connected in parallel), and the elements are distributed

between the system’s blocks according to some particular

distribution law (see schema in Figure 5.3d).
Gavrilov and Gavrilova (1991; 2001) studied the

reliability and failure rate of series–parallel systems with
distributed redundancy for two special cases: (1) the

redundancy distributed within an organism according to

the Poisson law or (2) according to the binomial law. They
found that the failure rate of such systems initially grows

according to the Gompertz law (in the case of the Poisson
distributed redundancy) or binomial failure law in the

case of the binomially distributed redundancy (Gavrilov

and Gavrilova, 1991; 2001). At advanced ages the failure

rate for both systems asymptotically approaches an upper

limit (mortality plateau). Reliability models for this

type of system are described in more detail in the section

on theoretical models of systems failure in aging.
Now that the basic concepts of reliability theory

have been discussed, we may proceed to linking them to

empirical observations on aging and mortality.

Empirical Observations on Systems Failure

in Aging

GENERAL OVERVIEW OF FAILURE KINETICS

There is a striking similarity between living organisms

and technical devices in the general age pattern of their

failures—in both cases the failure rate usually follows the

so-called bathtub curve (Figure 5.4).

The bathtub curve of failure rate is a classic concept

presented in all textbooks on reliability theory (Ayyub

and McCuen, 2003; Barlow and Proshan, 1975; Rausand

and Hoyland, 2003).
The bathtub curve consists of three periods. Initially

the failure rates are high and decrease with age. This

period is called the ‘‘working-in’’ period and the period of

‘‘burning-out’’ of defective components. For example, the

Figure 5.4. Bathtub mortality curves for humans and fruit flies.
Mortality is estimated on a daily basis; age is expressed in a
median lifespan scale (a similar approach was used by Pearl and
Miner, 1935 and Carnes et al., 1998). Mortality for Drosophila
melanogaster was calculated using data published by Hall (1969).
Mortality for humans was calculated using the official Swedish
female life table for 1985 (ages 0-80 years), and the 1980-90
decennial life table for Swedish females available in the Kannisto-
Thatcher Database on Old Age Mortality, http://www.demogr.
mpg.de/databases/ktdb (ages over 80 years), Source: Gavrilov
and Gavrilova, 2005.
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risk for a new computer to fail is often higher at the very

start, but then those computers that did not fail initially

work normally afterwards. The same period exists early

in life for most living organisms, including humans, and

it is called the ‘‘infant mortality’’ period. Then follows

the second period called ‘‘the normal working period,’’

corresponding to an age of low and approximately

constant failure rates. This period also exists in humans,

but unfortunately it is rather short (10–15 years) and ends

too soon. Then the third period, ‘‘the aging period,’’

starts, which involves an inexorable rise in the failure rate

with age. In most living organisms, including humans, this

rise in failure rates follows an explosive exponential

trajectory (the Gompertz curve). For humans, the aging

period lies approximately within the interval 20–100

years. Thus there is a remarkable similarity in the failure

patterns of technical and biological systems. This simi-

larity is reinforced further by the fact that at extreme old

ages there is one more, the fourth period common to both

technical devices and living organisms (Economos, 1979).

This period is known in biology as a period of late-life

mortality leveling-off (Carey and Liedo, 1995; Clark

and Guadalupe, 1995; Economos, 1979; Fukui et al.,

1993; 1996; Vaupel et al., 1998), and also as the late-life

mortality deceleration law (Fukui et al., 1993; 1996;

Khazaeli et al., 1996; Partridge and Mangel, 1999).

FAILURE LAWS IN SURVIVAL STUDIES

Attempts to develop a fundamental quantitative theory

of aging, mortality, and lifespan have deep historical

roots. In 1825, the British actuary Benjamin Gompertz

discovered a law of mortality (Gompertz, 1825), known

today as the Gompertz law (Finch, 1990; Gavrilov

and Gavrilova, 1991; Olshansky and Carnes, 1997;

Strehler, 1978). Specifically, he found that the force of

mortality increases in geometrical progression with the

age of adult humans. According to the Gompertz law,

human mortality rates double about every 8 years of adult

age.
Gompertz also proposed the first mathematical model

to explain the exponential increase in mortality rate with

age (Gompertz, 1825). In reality, system failure rates may

contain both nonaging and aging terms as, for example, in

the case of the Gompertz–Makeham law of mortality

(Finch, 1990; Gavrilov and Gavrilova, 1991; Makeham,

1860; Strehler, 1978):

�ðxÞ ¼ Aþ Re�x

In this formula the first, age-independent term

(Makeham parameter, A) designates the constant, ‘‘non-

aging’’ component of the failure rate (presumably due

to external causes of death, such as accidents and

acute infections), while the second, age-dependent term

(the Gompertz function, Re�x) designates the ‘‘aging’’

component, presumably due to deaths from age-related

degenerative diseases like cancer and heart disease.

The validity of the Gompertz–Makeham law of

mortality can be illustrated graphically, when the loga-
rithms of death rates without the Makeham parameter
(�x�A) are increasing with age in a linear fashion.

The log–linear increase in death rates (adjusted for
the Makeham term) with age is indeed a very common
phenomenon for many human populations at ages

35–70 years (Gavrilov and Gavrilova, 1991).
Note that the slope coefficient � characterizes an

‘‘apparent aging rate’’ (how rapid is the age-deterioration
in mortality)—if � is equal to zero, there is no apparent

aging (death rates do not increase with age).
At advanced ages (after age 70), the ‘‘old-age mortality

deceleration’’ takes place—death rates are increasing with

age at a slower pace than expected from the Gompertz–
Makeham law. This mortality deceleration eventually
produces ‘‘late-life mortality leveling-off ’’ and ‘‘late-life

mortality plateaus’’ at extreme old ages (Curtsinger et al.,
1992; Economos, 1979; 1983; Gavrilov and Gavrilova,
1991; Greenwood and Irwin, 1939; Vaupel et al., 1998).

Actuaries (including Gompertz himself) first noted this
phenomenon and proposed a logistic formula for
mortality growth with age in order to account for
mortality fall-off at advanced ages (Perks, 1932; Beard,

1959; 1971). Greenwood and Irwin (1939) provided a
detailed description of this phenomenon in humans and
even made the first estimates for the asymptotic value of

human mortality (see also review by Olshansky, 1998).
According to their estimates, the mortality kinetics of
long-lived individuals is close to the law of radioactive

decay with half-time approximately equal to 1 year.
The same phenomenon of ‘‘almost nonaging’’ survival

dynamics at extreme old ages is detected in many other

biological species. In some species the mortality plateau
can occupy a sizable part of their life (see Figure 5.5).

Biologists have been well aware of mortality
leveling-off since the 1960s. For example, Lindop (1961)

and Sacher (1966) discussed mortality deceleration in
mice. Strehler and Mildvan (1960) considered mortality
deceleration at advanced ages as a prerequisite for

all mathematical models of aging to explain. Later
A. Economos published a series of articles claiming a
priority in the discovery of a ‘‘non-Gompertzian para-

digm of mortality’’ (Economos, 1979; 1980; 1983; 1985).
He found that mortality leveling-off is observed in rodents
(guinea pigs, rats, mice) and invertebrates (nematodes,
shrimps, bdelloid rotifers, fruit flies, degenerate medusae

Campanularia Flexuosa). In the 1990s the phenomenon
of mortality deceleration and leveling-off became widely
known after some publications demonstrated mortality

leveling-off in large samples of Drosophila melanogaster
(Curtsinger et al., 1992) and medflies Ceratitis capitata
(Carey et al., 1992), including isogenic strains of

Drosophila (Curtsinger et al., 1992; Fukui et al., 1993;
1996). Mortality plateaus at advanced ages are observed
for some other insects: house fly Musca vicina and blowfly

Calliphora erythrocephala (Gavrilov, 1980), bruchid
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beetle Callosobruchus maculates (Tatar et al., 1993), fruit

flies Anastrepha ludens, Anastrepha obliqua, Anastrepha

serpentine and a parasitoid wasp Diachasmimorpha

longiacaudtis (Vaupel et al., 1998).
Interestingly, the failure kinetics of manufactured

products (steel samples, industrial relays, and motor

heat insulators) also demonstrates the same ‘‘nonaging’’

pattern at the end of their ‘‘lifespan’’ (Economos, 1979).

This phenomenon is presenting a theoretical challenge

to many models and theories of aging. One interesting

corollary from these intriguing observations is that

there seems to be no fixed upper limit for individual

lifespan (Gavrilov, 1984; Gavrilov and Gavrilova, 1991;

Wilmoth, 1997).
This observation calls for a very general explanation

of this apparently paradoxical ‘‘no aging at extreme ages’’

phenomenon, which will be discussed in this chapter.
Another empirical observation, the compensation law

of mortality, in its strong form refers to mortality

convergence, when higher values for the parameter �
(in the Gompertz function) are compensated by lower

values of the parameter R in different populations

of a given species:

lnðRÞ ¼ lnðMÞ � B�

where B and M are universal species-specific invariants.

Sometimes this relationship is also called the Strehler-

Mildvan correlation (Strehler, 1978; Strehler and

Mildvan, 1960), although that particular correlation was

largely an artifact of the opposite biases in parameters

estimation caused by not taking into account the

age-independent mortality component, the Makeham

term A (see Gavrilov and Gavrilova, 1991; Golubev,

2004). Parameter B is called the species-specific lifespan

(95 years for humans), and parameter M is called the

species-specific mortality rate (0.5 year�1 for humans).

These parameters are the coordinates for convergence of

all the mortality trajectories into one single point

(within a given biological species), when extrapolated by

the Gompertz function (Gavrilov and Gavrilova, 1979;

1991). This means that high mortality rates in dis-

advantaged populations (within a given species) are

compensated for by a low apparent ‘‘aging rate’’ (longer

mortality doubling period). As a result of this compensa-

tion, the relative differences in mortality rates tend to

decrease with age within a given biological species

(Figure 5.6).
In those cases when the compensation law of mortality

is not observed in its strong form, it may still be valid in

its weak form—i.e., the relative differences in mortality

rates of compared populations tend to decrease with

age in many species. Explanation of the compensation

law of mortality is a great challenge for many theories of

aging and longevity (Gavrilov and Gavrilova, 1991;

Strehler, 1978).
There are some exceptions from both the Gompertz

law of mortality and the compensation law of mortality
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Figure 5.6. Compensation Law of Mortality. Convergence of
mortality rates in different populations at advanced ages. Death
rates (with removed age-independent external mortality component)
are plotted in a log scale as a function of age in the following
countries: 1 – India, 1941–1950, males. 2 – Turkey, 1950–1951,
males. 3 – Kenya, 1969, males. 4 – Northern Ireland, 1950–1952,
males. 5 – England and Wales, 1930–1932, females. 6 – Austria,
1959–1961, females. 7 – Norway, 1956–1960, females. Adapted
from Gavrilov and Gavrilova, ‘‘The Biology of Life Span,’’ 1991.
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Figure 5.5. Mortality leveling-off in a population of 4,650 male
house flies, Hazard rates were computed using life table of house fly,
Musca domestica, published by Rockstein and Lieberman (1959).
Source: Gavrilov and Gavrilova, 2005.
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that have to be understood and explained. There were

reports that in some cases the organisms die according to

the Weibull (power) law (see the section on basic failure

models). The Weibull law is more commonly applicable to

technical devices (Barlow and Proschan, 1975; Rigdon

and Basu, 2000; Weibull, 1951), while the Gompertz law

is more common in biological systems (Finch, 1990;

Gavrilov and Gavrilova, 1991; Strehler, 1978). As was

already noted, the exponential Gompertzian increase in

age-specific mortality is observed for many biological

species including fruit flies Drosophila melanogaster,

nematodes, mosquitoes, human lice, flour beetles, mice,

rats, dogs, horses, mountain sheep, baboons and humans.

Comparative meta-analysis of 129 life tables for fruit flies

as well as 285 life tables for humans demonstrates that the

Gompertz law of mortality provides a much better data fit

for each of these two biological species, compared to the

Weibull law (Gavrilov and Gavrilova, 1991, pp. 55–56,

68–72). Possible explanations why organisms prefer to die

according to the Gompertz law, while technical devices

typically fail according to the Weibull law are provided

elsewhere (Gavrilov and Gavrilova, 1991; 2001; 2005) and

will be discussed later in this chapter (see the section on

theoretical models of systems failure in aging).

Both the Gompertz and the Weibull failure laws have

a fundamental explanation rooted in reliability theory

(Barlow and Proschan, 1975) and are the only two

theoretically possible limiting extreme value distributions

for systems whose lifespans are determined by the first

failed component (Gumbel, 1958; Galambos, 1978).

In other words, as the system becomes more and more

complex (contains more vital components, each being

critical for survival), its lifespan distribution may

asymptotically approach one of the only two theoreti-

cally possible limiting distributions—either Gompertz

or Weibull (depending on the early kinetics of failure

of system components). The two limit theorems in the

statistics of extremes (Gumbel, 1958; Galambos, 1978)

make the Gompertz and the Weibull failure laws

as fundamental as are some other famous limiting

distributions known in regular statistics, e.g., the normal

distribution and the Poisson distribution. It is puzzling,

however, why organisms prefer to die according to the

Gompertz law, while technical devices typically fail

according to the Weibull law. One possible explanation

of this mystery is suggested later in this chapter.
Thus, a comprehensive theory of species aging and

longevity should provide answers to the following

questions:

1. Why do most biological species deteriorate with

age (i.e., die more often as they grow older) while
some primitive organisms do not demonstrate such
a clear mortality growth with age (Austad, 2001;

Finch, 1990; Haranghy and Balázs, 1980; Martinez,
1998)?

2. Specifically, why do mortality rates increase expo-

nentially with age in many adult species (Gompertz
law)? How should we handle cases when the
Gompertzian mortality law is not applicable?

3. Why does the age-related increase in mortality
rates vanish at older ages? Why do mortality
rates eventually decelerate compared to predictions

of the Gompertz law, occasionally demonstrate
leveling-off (late-life mortality plateau), or even
a paradoxical decrease at extreme ages?

4. How do we explain the so-called compensation law

of mortality (Gavrilov and Gavrilova, 1991)?

Any theory of human aging has to explain these last

three rules, known collectively as mortality, or failure,

laws. And reliability theory, by way of a clutch of equa-

tions, covers all of them (see the section on theoretical

models of systems failure in aging, and Gavrilov and

Gavrilova, 1991, 2001, 2005).

DECLINE IN SYSTEMS’ REDUNDANCY WITH AGE

Many age changes in living organisms can be explained by

cumulative effects of cell loss over time. For example, the

very common phenomenon of hair graying with age is

caused by depletion of hair follicle melanocytes (Commo

et al., 2004). Melanocyte density in human epidermis

declines gradually with age at a rate approximately 0.8%

per year (Gilchrest et al., 1979). Hair graying is a

relatively benign phenomenon, but cell loss can also

lead to more serious consequences.
Recent studies found that such conditions as athero-

sclerosis, atherosclerotic inflammation, and consequent

thromboembolic complications could be linked to age-

related exhaustion of progenitor cells responsible for

arterial repair (Goldschmidt-Clermont, 2003; Libby,

2003; Rauscher et al., 2003). Taking these progenitor

cells from young mice and adding them to experimental

animals prevents atherosclerosis progression and athero-

sclerotic inflammation (Goldschmidt-Clermont, 2003;

Rauscher et al., 2003).

Age-dependent decline in cardiac function is also

linked to the failure of cardiac stem cells to replace

dying myocytes with new functioning cells (Capogrossi,

2004). It was found that aging-impaired cardiac angio-

genic function could be restored by adding endothelial

precursor cells derived from the young bone marrow

(Edelberg et al., 2002).
Chronic renal failure is known to be associated

with decreased number of endothelial progenitor cells

(Choi et al., 2004). People with diminished numbers of

nephrons in their kidneys are more likely to suffer from

hypertension (Keller et al., 2003), and the number of

glomeruli decreases with human age (Nyengaard and

Bendtsen, 1992).

Humans generally lose 30–40% of their skeletal

muscle fibers by age 80 (Leeuwenburgh, 2003), which
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contributes to such adverse health outcomes as

sarcopenia and frailty. Loss of striated muscle cells

in such places as rhabdosphincter from 87.6% in a

5-week-old child to only 34.2% in a 91-year-old has

obvious implications for urological failure—incontinence

(Strasser, 2000).
A progressive loss of dopaminergic neurons in

substantia nigra results in Parkinson’s disease, loss of

GABAergic neurons in striatum produces Huntington’s

disease, loss of motor neurons is responsible for amyo-

trophic lateral sclerosis, and loss of neurons in cortex

causes Alzheimer’s disease over time (Baizabal et al.,

2003). A study of cerebella from normal males aged 19–84

years revealed that the global white matter was reduced

by 26% with age, and a selective 40% loss of both

Purkinje and granule cells was observed in the anterior

lobe. Furthermore a 30% loss of volume, mostly due to

a cortical volume loss, was found in the anterior lobe,

which is predominantly involved in motor control

(Andersen et al., 2003).

The phenomenon of human aging of menopause also is

caused by loss of ovarian cells. For example, the female

human fetus at age 4–5 months possesses 6–7 million eggs

(oocytes). By birth, this number drops to 1–2 million and

declines even further. At the start of puberty in normal

girls, there are only 0.3–0.5 million eggs—just only 4–8%

of initial numbers (Gosden, 1985; Finch and Kirkwood,

2000; Wallace and Kelsey, 2004). It is now well

established that the exhaustion of the ovarian follicle

numbers over time is responsible for menopause (repro-

ductive aging and failure), and women having higher

ovarian reserve have longer reproductive lifespans

(Wallace and Kelsey, 2004). When young ovaries were

transplanted to old post-reproductive mice, their repro-

ductive function was restored for a while (Cargill et al.,

2003). This example illustrates a general idea that

aging largely occurs because of cell loss, which starts

early in life.
Loss of cells with age is not limited to the human

species and is observed in other animals as well. For

example, a nematode C. elegans demonstrates a gradual,

progressive deterioration of muscle, resembling human

sarcopenia (Herndon et al., 2002). The authors of

this study also found that the behavioral ability of

nematodes was a better predictor of life expectancy than

chronological age.
Interestingly, caloric restriction can prevent cell loss

(Cohen et al., 2004; McKiernan et al., 2004), which

may explain why caloric restriction delays the onset of

numerous age-associated diseases and can significantly

increase lifespan in mammals (Masoro, 2003).
In terms of reliability theory the loss of cells with age

is a loss of system redundancy, and therefore this

chapter will focus further on the effects of redundancy

loss on systems aging and failure.

Causes of Failure Rate Increase with Age

THE ORIGIN OF AGE-RELATED INCREASE
IN FAILURE RATES

The aging period for most species occupies the greater

part of their lifespan; therefore any model of mortality

must explain the existence of this period. It turns out

that the phenomena of mortality increase with age and

the subsequent mortality leveling-off are theoretically

predicted to be an inevitable feature of all reliability

models that consider aging as a progressive accumulation

of random damage (Gavrilov and Gavrilova, 1991).

The detailed mathematical proof of this prediction

for some particular models is provided elsewhere

(Gavrilov and Gavrilova, 1991; 2001) and is briefly

described in the next sections of this chapter.
The simplest schema, which demonstrates an

emergence of aging in a redundant system, is presented

in Figure 5.7.

If the destruction of an organism occurs not in one but

in two or more sequential random stages, this is sufficient

for the phenomenon of aging (mortality increase) to

appear and then to vanish at older ages. Each stage of

destruction corresponds to one of the organism’s vitally

important structures being damaged. In the simplest

organisms with unique critical structures, this damage

usually leads to death. Therefore, defects in such

organisms do not accumulate, and the organisms them-

selves do not age—they just die when damaged. For

example, the inactivation of microbial cells and spores

exposed to a hostile environment (such as heat)

follows approximately a nonaging mortality kinetics;

their semilogarithmic survival curves are almost linear

(Peleg et al., 2003). This observation of nonaging survival

Defect

Death
(no aging) 

Defect

Damage accumulation
(aging)

Damage

Damage

No redundancy

Redundancy

Figure 5.7. Redundancy creates both damage tolerance and
damage accumulation (aging). Systems without redundancy (on the
top) fail every time when they are damaged, and therefore damage
is not accumulated among survivors (no aging). Redundant systems
(on the bottom) can sustain damage because of their redundancy,
but this damage tolerance leads to damage accumulation (aging).
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dynamics is extensively used in the calculation of the

efficacy of sterilization processes in medicine and food

preservation (Brock et al., 1994; Davis et al., 1990; Jay,

1996). A similar nonaging pattern of inactivation kinetics

is often observed for viruses (Andreadis and Palsson,

1997; Kundi, 1999) and enzymes (Kurganov, 2002;

Gouda et al., 2003).
In more complex systems with many vital structures

and significant redundancy, every occurrence of damage

does not lead to death (unless the environment is

particularly hostile) because of their redundancy. Defects

accumulate, therefore, giving rise to the phenomenon

of aging (mortality increase). Thus, aging is a direct

consequence (trade-off) of a system’s redundancies, which

ensure increased reliability and an increased lifespan of

more complex organisms. As defects accumulate, the

redundancy in the number of elements finally disappears.

As a result of this redundancy exhaustion, the organism

degenerates into a system with no redundancy (that is,

a system with elements connected in series, in which any

new defect leads to death). In such a state, no further

accumulation of damage can be achieved, and the

mortality rate levels off.
Reliability theory predicts that a system may deterio-

rate with age even if it is built from nonaging elements

with a constant failure rate. The key issue here is the

system’s redundancy for irreplaceable elements, which is

responsible for the aging phenomenon. In other words,

each particular step of system destruction/deterioration

may seem to be apparently random (no aging, just

occasional failure by chance), but if a system failure

requires a sequence of several such steps (not just a single

step of destruction), then the system as a whole may

have an aging behavior.
The positive effect of systems’ redundancy is damage

tolerance, which decreases the risk of failure (mortality)

and increases lifespan. However damage tolerance makes

it possible for damage to be tolerated and accumulated

over time, thus producing the aging phenomenon.
The next section provides a mathematical illustration

for these ideas.

THE SIMPLEST RELIABILITY MODEL OF AGING

In this section we show that a system built of nonaging

components demonstrates an aging behavior (mortality

growth with age) and subsequent mortality leveling-off.

Consider a parallel system built of n nonaging elements

with a constant failure rate � and reliability (survival)

function e��x (see also Figure 5.3b). We already showed

(see the system’s failure and reliability structure section)

that in this case the reliability function of the entire

parallel system is

SðxÞ ¼ 1� ð1� pÞn ¼ 1� ð1� e��xÞn

This formula corresponds to the simplest case when

the failure of elements is statistically independent. More

complex models would require specific assumptions or

prior knowledge on the exact type of interdependence in

elements failure. One such model known as ‘‘the model of

the avalanche-like destruction’’ is described elsewhere (see

pp. 246–251 in Gavrilov, Gavrilova, 1991) and is briefly

summarized in the theoretical models of systems failure in

aging section.

Consequently, the failure rate of the entire system

�s(x), can be written as follows:

�sðxÞ ¼
�dSðxÞ

SðxÞdx
¼

n�e��x 1� e��xð Þ
n�1

1� 1� e��xð Þ
n

� n�nxn�1

when x � 1/� (early-life period approximation, when

1� e��x��x);

��

when x � 1/� (late-life period approximation, when

1� e��x� 1).
Thus, the failure rate of a system initially grows as

a power function n of age (the Weibull law). Then

the tempo at which the failure rate grows declines,

and the failure rate approaches asymptotically an upper

limit equal to �.
Here we should pay attention to three significant

points. First, a system constructed of nonaging elements

is now behaving like an aging object: aging is a

direct consequence of the redundancy of the system

(redundancy in the number of elements). Second, at very

high ages the phenomenon of aging apparently disappears

(failure rate levels off ), as redundancy in the number of

elements vanishes. The failure rate approaches an upper

limit, which is totally independent of the initial number

of elements, but coincides with the rate of their loss

(parameter �). Third, the systems with different initial

levels of redundancy (parameter n) will have very dif-

ferent failure rates in early life, but these differences

will eventually vanish as failure rates approach the

upper limit determined by the rate of elements’ loss

(parameter �). Thus, the compensation law of mortality

(in its weak form) is an expected outcome of this

illustrative model.

Note also that the identical parallel systems in this

example do not die simultaneously when their elements

fail by chance. A common view in biology is the idea

that all the members of homogeneous population in

a hypothetical constant environment should die simulta-

neously so that the survival curve of such a population

would look like a rectangle. This idea stems from the

basic principles of quantitative genetics, which assume

implicitly that every animal of a given genotype has the

same genetically determined lifespan so that all variation

of survival time around a genotype mean results from the

environmental variance. George Sacher (1977) pointed

out that this concept is not applicable to longevity and

used an analogy with radioactive decay in his arguments.
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Even the simplest parallel system has a specific

lifespan distribution determined entirely by a stochastic

nature of the aging process. In order to account for this

stochasticity it was proposed to use a stochastic variance

component of lifespan in addition to genetic and environ-

mental components of phenotypic lifespan variance

(Gavrilov and Gavrilova, 1991). The stochastic nature

of the system’s destruction also produces heterogeneity

in an initially homogeneous population. This kind of

induced heterogeneity was observed in isogenic strains

of nematodes, in which aging resulted in substantial

heterogeneity in behavioral capacity among initially

homogeneous worms kept in controlled environmental

conditions (Herndon et al., 2002).
The graph shown in Figure 5.8 depicts mortality

trajectories for five systems with different degrees of

redundancy.

System 1 has only one unique element (no redun-

dancy), and it has the highest failure rate, which does not

depend on age (no aging). System 2 has two elements

connected in parallel (one extra element is redundant),

and the failure rate initially increases with age (aging

appears). The apparent rate of aging can be characterized

by a slope coefficient that is equal to 1. Finally, the failure

rate levels off at advanced ages. Systems 3, 4, and 5 have,

respectively, three, four, and five elements connected in

parallel (two, three, and four extra elements are redun-

dant), and the failure rate initially increases with age at

an apparent aging rate (slope coefficient) of 2, 3, and 4,

respectively. Finally, the mortality trajectories of each

system level off at advanced ages at exactly the same

upper limit to the mortality rate.

This computational example illustrates the following

statements: (1) Aging is a direct consequence of a system’s

redundancy, and the expression of aging is directly related

to the degree of a system’s redundancy. Specifically, an

apparent relative aging rate is equal to the degree of

redundancy in parallel systems. (2) All mortality trajec-

tories tend to converge with age, so that the compensation

law of mortality is observed. (3) All mortality trajectories

level off at advanced ages, and a mortality plateau is

observed. Thus, the major aging phenomena (aging itself,

the compensation law of mortality, late-life mortality

deceleration, and late-life mortality plateaus) are already

observed in the simplest redundant systems. However, to

explain the Gompertz law of mortality, an additional

idea of initial damage load should be taken into account

(see next section).

Theoretical Models of Systems Failure

in Aging

HIGHLY REDUNDANT SYSTEM REPLETE WITH
DEFECTS

It was demonstrated in the previous section that the

failure rate of a simple parallel system grows with age

according to the Weibull law. This model analyzed

initially ideal structures in which all the elements are

functional from the outset. This standard assumption may

be justified for technical devices manufactured from

pretested components, but it is not justified for living

organisms, replete with initial defects (see Gavrilov and

Gavrilova, 1991; 2001; 2004b; 2005).

Following the tradition of the reliability theory,

we start our analysis with reliability of an individual

system (or homogeneous population). This model of

series–parallel structure with distributed redundancy was

suggested by Gavrilov and Gavrilova in 1991 and

described in more detail in 2001.

Consider first a series–parallel model in which

initially functional elements occur very rarely with low

probability q, so that the distribution of the organism’s

subsystems (blocks) according to the initial function-

ing elements they contain is described by the Poisson

law with parameter l ¼ nq. Parameter l corresponds to

the mean number of initially functional elements in a

block.

Figure 5.8. Failure kinetics of systems with different levels of
redundancy. The dependence of the logarithm of mortality force
(failure rate) on the logarithm of age in five systems with different
levels of redundancy (computer simulation experiment). The scales
for mortality rates (vertical axis) and for age (horizontal axis) are
presented in dimensionless units (�s/�) for mortality rates, and �x
for age), to ensure the generalizability of the results (invariance of
graphs on failure rate of the elements in the system, parameter �).
Also, the log scale is used to explore the system behavior in
a wide range of ages (0.01�10 units) and failure rates
( 0.00000001�1.0 units). Dependence 1 is for the system
containing only one unique element (no redundancy). Dependence
2 is for the system containing two elements connected in parallel
(degree of redundancy ¼ 1). Dependencies 3, 4 and 5 are for
systems containing, respectively, 3, 4 and 5 elements connected in
parallel (with increasing levels of redundancy). Source: Gavrilov and
Gavrilova, 2005.
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As has already been noted, the failure rate of a system

constructed out of m blocks connected in series is equal to

the sum of the failure rates of these blocks, �b (Barlow

et al., 1965):

�s ¼
X

�b ¼
Xn

i¼1

mPi�bðiÞ ¼ mCe�l
Xn

i¼1

li�bðiÞ

i!

where Pi is the probability of a block to have i initially

functioning elements. Parameter C is a normalizing factor

that ensures the sum of the probabilities of all possible

outcomes being equal to unity (see Gavrilov, Gavrilova,

1991; 2001). For sufficiently high values of n and l, the
normalizing factor turns out to be hardly greater than

unity.

Using the formula for failure rate of a block of

elements connected in parallel (see the simplest

reliability model of aging section), we obtain the final

expression for the series–parallel system with distributed

redundancy:

�s ¼ �lmCe�l
Xn

i¼1

ðl�xÞi�1

ði� 1Þ!
� Rðe�x � "ðxÞÞ � Re�x

where R ¼ Cml�e�l, � ¼ l�
"(x) is close to zero for large n and small x (initial

period of life; see Gavrilov, Gavrilova, 1991, 2001 for

more detail).

In the early-life period (when x� 1/�) the morta-

lity kinetics of this system follows the exponential

Gompertzian law.
In the late-life period (when x� 1/�), the failure rate

levels off and the mortality plateau is observed:

�sðxÞ � m�

If the age-independent mortality (A) also exists in

addition to the Gompertz function, we obtain the well-

known Gompertz–Makeham law described earlier.

At advanced ages the rate of mortality decelerates and

approaches asymptotically an upper limit equal to m�.
The model explains not only the exponential increase

in mortality rate with age and the subsequent leveling-off,

but also the compensation law of mortality:

lnðRÞ ¼ lnðCm�Þ �
�

�
¼ lnðMÞ � B�

where M ¼ Cm�, B ¼ 1/�.
According to this model, the compensation law is

inevitable whenever differences in mortality arise from

differences in the parameter l (the mean number of

initially functional elements in the block), while the ‘‘true

aging rate’’ (rate of elements’ loss, �) is similar in different

populations of a given species (presumably because of

homeostasis). In this case, the species-specific lifespan

estimated from the compensation law as an expected age

at mortality convergence (95 years for humans, see

Gavrilov and Gavrilova, 1991) characterizes the mean

lifetime of the elements (1/�).

The model also predicts certain deviations from the

exact mortality convergence in a specific direction because
the parameter M proved to be a function of the parameter

� according to this model (see earlier). This prediction
could be tested in future studies.

It also follows from this model that even small
progress in optimizing the processes of ontogenesis and

increasing the numbers of initially functional elements (l)
can potentially result in a remarkable fall in mortality
and a significant improvement in lifespan.

The model assumes that most of the elements in the
system are initially nonfunctional. This interpretation of

the assumption can be relaxed, however, because most
nonfunctional elements (e.g., cells) may have already died

and been eliminated by the time the adult organism is
formed. In fact, the model is based on the hypothesis that

the number of functional elements in the blocks is
described by the Poisson distribution, and the fate of
defective elements and their death in no way affects the

conclusions of the model. Therefore, the model may be
reformulated in such a way that stochastic events in early

development determine later-life aging and survival
through variation in initial redundancy of organs and

tissues (see, for example, Finch and Kirkwood, 2000).
Note that this model does not require an assumption of

initial population heterogeneity in failure risks. Instead
the model is focused on distributed redundancy of

physiological systems within a given organism, or a
group of initially identical organisms.

PARTIALLY DAMAGED REDUNDANT SYSTEM

In the preceding section, we examined a reliability model
for a system consisting of m series-connected blocks with

numbers of elements distributed according to the Poisson
law. In this section, we consider a more general case

in which the probability of an element being initially
functional can take any possible value: 05 q� 1 (see

Gavrilov and Gavrilova, 1991; 2001 for more detail).
In the general case, the distribution of blocks in the

organism according to the number of initially functional

elements is described by the binomial rather than Poisson
distribution.

If an organism can be presented as a system
constructed of m series-connected blocks with binomially

distributed elements, its failure rate is given by the
following formula:

�s � Cmn ðq�Þn
1� q

q�
þ x

� �n�1
¼ Cmn ðq�Þnðx0 þ xÞn�1

where x0 ¼
1� q

q�

It is proposed to call a parameter x0 the initial virtual
age of the system, IVAS (Gavrilov and Gavrilova, 1991;

2001). Indeed, this parameter has the dimension of time,
and corresponds to the age by which an initially ideal
system would have accumulated as many defects as a real
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system already has at the initial moment in time (at x ¼

0). In particular, when q ¼ 1, i.e., when all the elements

are functional at the beginning, the initial virtual age

of the system is zero and the failure rate grows as a

power function of age (the Weibull law), as described in

the causes of failure rate increase with age section.

However, when the system is not initially ideal (q5 1),

we obtain the binomial law of mortality (see basic failure

models).

In the case when x04 0, there is always an initial

period of time, such that x�x0 and the following

approximation to the binomial law is valid:

�s � Cmnðq�Þnxn�10 1þ
x

x0

� �n�1

� Cmnðq�Þnxn�10 exp
n� 1

x0
x

� �

Hence, for any value of q5 1 there always exists

a period of time x when the number of newly formed

defects is much less than the original number, and the

failure rate grows exponentially with age.
So, if the system is not initially ideal (q5 1), the failure

rate in the initial period of time grows exponentially with

age according to the Gompertz law. A numerical example

provided in Figure 5.2 (see the reliability approach to

system’s failure in aging section) shows that increase in the

initial system’s damage load (initial virtual age) converts

the observed mortality trajectory from the Weibull

to the Gompertz one.
The model discussed here not only provides an

explanation for the exponential increase in the failure

rate with age, but it also explains the compensation law

of mortality (see Gavrilov and Gavrilova, 1991; 2001).
The compensation law of mortality is observed

whenever differences in mortality are caused by differ-

ences in initial redundancy (the number of elements in a

block, n), while the other parameters, including the ‘‘true

aging rate’’ (rate of elements’ loss �), are similar in

populations of a given species (presumably because of

homeostasis—stable body temperature, glucose concen-

tration, etc.). For lower organisms with poor homeostasis

there may be deviations from this law. Our analysis

of data published by Pletcher et al. (2000) revealed that

in Drosophila this law holds true for male–female

comparisons (keeping temperature the same), but not

for experiments conducted at different temperatures,

presumably because temperature may influence the rate

of element loss.
The failure rate of the blocks asymptotically

approaches an upper limit which is independent of

the number of initially functional elements and is equal

to �. Therefore the failure rate of a system consisting of

m blocks in series tends asymptotically with increased

age to an upper limit m�, independently of the values of

n and q.

Thus the reliability model described here provides an

explanation for a general pattern of aging and mortality

in biological species: the exponential growth of failure rate

in the initial period, with the subsequent mortality

deceleration and leveling-off, as well as the compensation

law of mortality.

This model might also be called the model of series-

connected blocks with varying degrees of redundancy or

distributed redundancy. The basic conclusion of the

model might be reformulated as follows: if vital compo-

nents of a system differ in their degree of redundancy,

the mortality rate initially grows exponentially with age

(according to the Gompertz law) with subsequent leveling-

off in later life.

HETEROGENEOUS POPULATION OF
REDUNDANT ORGANISMS

In the previous sections, we examined a situation in

which series-connected blocks have varying degrees

of redundancy within each organism, while the organ-

isms themselves were considered to be initially

identical to each other and to have the same risk of

death. This latter assumption can be justified in some

special cases (see Gavrilov and Gavrilova, 1991) and

also when the focus is on the analysis of the individual

risks of failure. In a more general case the population

heterogeneity needs to be taken into account, because

there is a large variation in the numbers of cells for the

organisms of the same species (Finch and Kirkwood,

2000).

In this section, we demonstrate that taking into

account the heterogeneity of the population provides an

explanation for all the basic laws of mortality. This model

of heterogeneous redundant systems was proposed by

Gavrilov and Gavrilova in 1991 (pp. 264–272).
The model considers the simplest case when the

organism consists of a single vital block with n elements

connected in parallel with q being the probability that

an element is initially functional. Then the probability of

encountering an organism with i initially functional

elements out of a total number n of elements is given

by the binomial distribution law.
The final formula for failure rate in heterogeneous

population, �p(x), is (see Gavrilov and Gavrilova, 1991

for more details):

�pðxÞ ¼
F 0ðxÞ

1� FðxÞ
¼

nq�e��xð1� qe��xÞn�1

1� ð1� qe��xÞn

� Cnq�ð1� qþ q�xÞn�1 for x� 1=�

� � for x� 1=�

where C is a normalizing factor.

Thus the hazard rate of a heterogeneous population

at first grows with age according to the binomial law
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of mortality, then asymptotically approaches an upper

limit �:

�pðxÞ � Cnðq�Þn
1� q

q�
þ x

� �n�1

¼ Cnðq�Þnðx0 þ xÞn�1 for x�
1

�

�pðxÞ � � for x�
1

�

where x0 ¼ ð1� qÞ=q�, a parameter which we propose to

call the initial virtual age of the population. This

parameter has the dimension of time, and corresponds

to the age by which an initially homogeneous population

would have accumulated as many damaged organisms as

a real population actually possesses at the initial moment

in time (at x ¼ 0). In particular, when q ¼ 1, i.e., when all

the elements in each organism are functional at the outset,

the initial virtual age of the population is zero and the

hazard rate of population grows as a power function of

age (the Weibull law), this being the case described in

causes of failure rate increase with age. However when the

population is not initially homogeneous (q5 1), we arrive

at the already mentioned binomial law of mortality. Thus,

the heterogeneous population model proposed here can

also provide a theoretical justification for the binomial

law of mortality.

If a population is initially heterogeneous (q5 1), the

hazard rate in the initial period of time grows exponen-

tially with age (according to the Gompertz law).

The heterogeneous population model not only

provides an explanation for the exponential growth in

the failure rate with age, but also the compensation law

of mortality (Gavrilov and Gavrilova, 1991). The

compensation effect of mortality is observed whenever

differences in mortality are brought about by inter-

population differences in the number of elements in the

organism (n), while the other parameters, including

the rate of aging (the rate of irreversible elements

failure �), are similar for all compared populations of a

particular species (presumably because of homeostasis

in physiological parameters). It is not difficult to see the

similarity between this explanation for the compen-

sation effect of mortality and the explanations which

emerge from the models of individual system described

in preceding sections.

Figure 5.9 presents the age kinetics of failure rate in

heterogeneous population where redundancy is distribu-

ted by the Poisson law (a special case of binomial

distribution) with different mean number of functional

elements (l ¼ 1, 5, 10, 15 and 20).

Note that the logarithm of the failure rate is increas-

ing with age in almost a linear fashion, indicating

a reasonable applicability of the Gompertz law in this

case. Also note that the slope of the lines is increasing

with higher mean redundancy levels (l), and the lines

have a tendency for convergence (compensation law of

mortality).
The heterogeneous population model leads in principle

to the same conclusions as the previously discussed model

of series-connected blocks with varying degrees of

redundancy. However, we are dealing with two funda-

mentally different models: whereas in the first model the

individual risk of death is the same for all organisms and

grows exponentially with age, in the second model there

initially exist n subpopulations of living organisms with

different risks of death which grow as a power function

rather than exponential function of age. However, these

different models seem to lead to virtually coincident

interpretations of certain mortality phenomena. For

example, the compensation effect of mortality is only

possible, according to any of the models, when the rate of

irreversible age changes is approximately constant within

a given species. This interpretation of the compensation

effect of mortality is not only a feature of the three models

examined in this chapter, but also of other models

(Gavrilov, 1978; Gavrilov et al., 1978; Strehler and

Mildvan, 1960).
Thus, the heterogeneous population model provides an

explanation for all the basic mortality phenomena (the

exponential growth of the force of mortality in the initial

period, with the subsequent mortality deceleration, as well

as the compensation effect of mortality) even in the

simplest case when the organism consists of a single vital

block with n parallel elements. Generalizing the model to

the case of m blocks connected in series in each organism

does not present any problems if the blocks are
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Figure 5.9. Failure kinetics in mixtures of systems with different
redundancy levels. Initial period. The dependence of failure rate as
a function of age in mixtures of parallel redundant systems
having Poisson distribution by initial numbers of functional elements
(mean number of elements, � ¼ 1, 5, 10, 15, 20). Source: Gavrilov
and Gavrilova, 2005.
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independent of each other with respect to their reliability

(Gavrilov and Gavrilova, 1991).

MODELS OF AVALANCHE-LIKE DESTRUCTION

For want of a nail the shoe was lost,
For want of a shoe the horse was lost,

For want of a horse the rider was lost,
For want of a rider the battle was lost,
For want of a battle the kingdom was lost,

And all for the want of a horseshoe nail.
— English nursery rhyme (ca. 1390)

The models described in previous sections assumed

that the failures of elements in the organism occur

independently of each other. This assumption may be

acceptable as the first approximation. In real biological

systems many aging phenomena may be represented as

a ‘‘cascade of dependent failures’’ which occurs when one

of the organism’s systems randomly fails (Gavrilov, 1978;

Gavrilov et al., 1978). The idea that an avalanche-like

mechanism is involved in the destruction of an organism

during natural aging is worth further consideration.

In fact, it is well-known that defects in an organism

have a tendency to multiply following an avalanche-like

mechanism. For example, if there are n cancer cells in the

organism, each of which is capable of division, the rate

at which the organism is transformed into a state with

nþ 1 cancer cells increases with the growth of the number

of cancer cells (n) already accumulated. Infections of the

organism follow similar regularities. The positive feed-

back between the degree and the rate of an organism’s

destruction also follows from the fact that when parts

of the structure fail, the load on the remaining structures

increases, accelerating the wearing-out. It seems that

aging may be caused by similar cascades of dependent

failures developing over long periods in a hidden,

preclinical form. Therefore mathematical models of

the avalanche-like destruction of the organism are of

particular interest.
Consider the simplest model of the avalanche-like

destruction of the organism (Gavrilov and Gavrilova,

1991). Let S0, S1, . . . ,Sn denote the states of an organism

with 0, 1, 2, . . . , n defects. Let l0 be the background

rate at which defects accumulate being independent on

the stage of destruction, which the organism has reached.

Correspondingly, let �0 be the age-independent mortality

(the Makeham term). In the simplest case, both of these

quantities arise from random harmful effects of the

external environment. In tandem, there is also an induced

rate of deterioration (parameter l) and an induced failure

rate (parameter �) which grow as the number of defects

increases. At a first approximation, it can be assumed that

both the induced rate of deterioration and the induced

failure rate are proportional to the number of defects,

so that for an organism with n defects the induced rate

of deterioration is equal to nl, and the induced failure

rate is n�.
With these assumptions, we can present the avalanche-

like destruction of the organism by the schema presented

in Figure 5.10.
This schema corresponds to the following system of

differential equations:

dS0=dx ¼ �ðl0 þ �0ÞS0

dS1=dx ¼ l0S0 � ðl0 þ �0 þ lþ �ÞS1
dSn=dx ¼ ½l0 þ ðn� 1Þl�Sn�1 � ½l0 þ �0 þ nðlþ �Þ�Sn

A similar system of equations (not taking into account

the age-independent mortality) was obtained and solved

in a mathematical model linking the survival of organisms
with chromosome damage (Le Bras, 1976). However,

this ‘‘chromosomal’’ interpretation of the avalanche

model could be applicable only to unicellular organisms,

while for multicellular organisms including humans,

where chromosomes are compartmentalized in separate

cells, this model needs to be revised, or provided with

a different ‘‘nonchromosomal’’ interpretation (as it is
suggested in this section).

In the particular case when the rate at which defects

multiply, the parameter l is significantly greater than the
induced failure rate, parameter �,(l��), the hazard rate

of an organism in the initial stage (with low values of x)

grows according to the Gompertz–Makeham law:

�ðxÞ � �0 þ
�l0ð1� eðlþ�ÞxÞ

leðlþ�Þx
� Aþ Re�x

where A ¼ �0 �
�l0
l

; R ¼
�l0
l

; � ¼ lþ �

This model of the avalanche-like destruction of the
organism not only provides a theoretical justification

for the well-known Gompertz–Makeham law, but also

explains why the values of the Makeham parameter A

sometimes turn out to be negative (when age-independent

mortality, �0, is small as for populations in the developed

countries and the background rate of destruction,

l0, is large).
Another advantage of the avalanche-like destruction

model is that it correctly predicts mortality deceleration

(deviations from the Gompertz–Makeham law) at very

m0

l0 l0 + l l0 + 2l l0 + 3l l0 + nl
S0 S1 S2 S3 Sn

m0 + m m0 + 2m m0 + 3m m0 + nm

Figure 5.10. Avalanche-like mechanism of organism’s destruction
with age. In the initial state (S0) organism has no defects. Then, as
a result of random damage, it enters states S1, S2, . . . Sn, where n
corresponds to the number of defects. Rate of new defects
emergence has avalanche-like growth with the number of already
accumulated defects (horizontal arrows). Hazard rate (vertical arrows
directed down) also has an avalanche-like growth with the
number of defects.
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old ages. In this extreme age-range, the failure rate grows

with age according to the formula

�ðxÞ � �0 þ l0ð1� e�ðlþ�ÞxÞ

Thus the model predicts an asymptotic growth of

failure rate with age with an upper limit of �0þ l0.
Alongside the strengths already listed, the avalanche-

like destruction model has one significant limitation:

it does not conform to the compensation law of mortality

in its strong form (Gavrilov and Gavrilova, 1991).

Nevertheless, the idea that organisms undergo cascade

destruction is one of the promising ideas in further

mathematical modeling of aging.

ACCUMULATION OF DEFECTS WITH CONSTANT
RATE OF DAMAGE FLOW

A wide variety of concepts about the destruction of the

organism can lead to the model where the rate of damage

flow, numerically equal to the mean number of ‘‘hits’’

per unit of time, is practically independent of the state

of the organism and is on average constant in time.

In the simplest case, the model corresponds to a situation

in which the organism is affected by a random flow of

traumatic loads with an on average constant rate

independent of the state of the organism (exogenous

environmental damage like cosmic radiation, viruses, etc.)
However, there is also the possibility of other

mechanisms of destruction leading to this particular

model of the accumulation of defects. In particular, this

model can be obtained after a critical reinterpretation of

the assumptions underlying the previously described

models. In fact, these models contain an assumption

that the death of the organism occurs only when all the

elements in a block fail. It is possible that this hypothesis

may be justified for some of the organism’s systems (stem

cell populations, for example). However, in the majority

of cases this hypothesis seems contentious. For example,

it is hard to imagine that a single surviving liver cell

(hepatocyte) can assume the functions of an entire

destroyed liver. Significantly more realistic is the hypoth-

esis that the system initially contains an enormous

number of elements that greatly exceeds the critical

number of defects leading to the death of the organism.

In this case we arrive at a schema for the accumulation of

damage in which the rate of damage flow (equal to the

product of the number of elements and their failure rate)

turns out to be practically constant in view of the

incommensurability of the high initial numbers of

elements, and the much smaller permitted number of

defects (Gavrilov and Gavrilova, 1991).

Another advantage of this model is that it allows us to

take into account the influence of living conditions on the

value for the critical number of defects incompatible with

the survival of the organism. The key to the solution of

this problem is the replacement of the parallel connection

hypothesis (assumed in previously described models) with

the more realistic assumption that there exists a critical

number of defects incompatible with the survival of the

organism. In this case, it is natural to expect that under
harsher conditions the critical number of defects leading

to death might be less than under more comfortable living
conditions. In particular, in the wild, when an animal is

deprived of care and forced to acquire its own food, as
well as to defend itself against predators, the first serious

damage to the organism can lead to death. It is therefore
not surprising that the mortality of many animals

(in particular, birds) is practically independent of age

in the wild. This follows directly from the single-
stage destruction of the organism model. On the other

hand, the greater the number of defects the organism
can accumulate while remaining alive, the greater its life-

span will be.
If the rate of the damage flow equals k, and an

organism dies after the accumulation of n defects, the
density of the survival distribution is identical to the

density of the gamma function (see Barlow and Proschan,
1965; 1975). At the initial moment in time, this distribu-

tion corresponds to a power (Weibull) law of mortality

with an exponent equal to (n� 1).
A fundamentally different result is obtained when the

initial damage of organisms is taken into account

(Gavrilov and Gavrilova, 1991). If at the initial moment
in time the average number of random defects in the

population equals l, the probability of encountering

a living organism, Pi, with i defects may be approximated
by the Poisson law (see Gavrilov and Gavrilova, 1991,

pp. 272–276, for more detail).
Since the death of an organism with i defects occurs

after n� i additional hits, the density of the lifespan
distribution for such organisms is given by

fiðxÞ ¼
kðkxÞn�i�1e�kx

ðn� i� 1Þ!
; where i < n

The density of the survival distribution for the whole
population, which is a mixture of organisms with i ¼ 0, 1,

2, . . . n� 1 initial defects, equals

f ðxÞ ¼
Xn�1

i¼0

Pi fiðxÞ ¼ Cke�ðlþkxÞ
Xn�1

i¼0

liðkxÞn�i�1

i!ðn� 1� iÞ!

¼
Ckðlþ kxÞn�1e�ðlþkxÞ

ðn� 1Þ!

It is not difficult to see that at the initial moment in
time this model leads to the binomial law of mortality,

with an initial virtual age of the population equal to l/
k. A more detailed analysis of the model is formally

similar to the analysis of the other models described
in previous sections. We merely note that during the

initial time period when x� l/k, the model leads to
an exponential growth of failure rate with age (the

Gompertz law) with an exponent, �, of k(n� 1)/l
and a pre-exponential factor, R, of Ckln�1=ðn� 1Þ!. It is

62

Leonid A. Gavrilov and Natalia S. Gavrilova



File: {Elsevier}Conn/Revises-I/3d/P369391-Ch05.3d
Creator: sunil/cipl-u1-3b2-6.unit1.cepha.net Date/Time: 7.12.2005/2:04pm Page: 63/68

easy to see that an inverse relationship between these

Gompertz parameters (the compensation effect of

mortality) can arise both as a result of variation in para-

meter l (the degree to which the organisms are initially

damaged) and of variation in parameter n (the critical

number of defects, dependent on the harshness of living

conditions).
Thus the basic mortality phenomena can equally

be explained within the framework of the model of

accumulation of defects with the constant rate of

damage flow, as long as the organisms initially contain

a significant number of defects.
Summarizing this brief review of reliability models, we

note the striking similarity between the formulas and

conclusions of the considered models. It must, however,

be noted that we are dealing only with a superficial

similarity in behavior between fundamentally different

and competing models. The existence of a multitude of

competing models is therefore compatible with the

reliable and meaningful interpretation of a number of

mortality phenomena, since pluralism of models does not

preclude their agreement on a number of issues. All these

models predict a mortality deceleration, no matter

what assumptions are made regarding initial population

heterogeneity, or its complete initial homogeneity.

Moreover, these reliability models of aging produce

mortality plateaus as the inevitable outcome for any

values of considered parameters (Gavrilov and Gavrilova,

1991). The only constraint is that the elementary steps of

the multistage destruction process of a system should

occur only by chance, independent of age. The models

also predict that an initially homogeneous population will

become highly heterogeneous for risk of death over time

(acquired heterogeneity).

Conclusions

Theoretical reliability models of system failure in aging

considered in this book chapter lead to the following

conclusions:

1. Redundancy is a key notion for understanding
aging and the systemic nature of aging in partic-

ular. Systems, which are redundant in numbers of
irreplaceable elements, do deteriorate over time
(fail more often with age), even if they are built of
nonaging elements. The positive effect of systems’

redundancy is damage tolerance, which decreases
mortality and increases lifespan. However damage
tolerance makes it possible for damage to be

tolerated and accumulated over time, thus produc-
ing the aging phenomenon.

2. An apparent aging rate or expression of aging

(measured as age differences in failure rates,
including death rates) is higher for systems with
higher redundancy levels (all other things being

equal). This is an important issue, because it helps

to put a correct perspective on fascinating obser-

vations of negligible senescence (no apparent aging)
observed in the wild and at extreme old
ages. Reliability theory explains that some cases

of negligible senescence may have a trivial mechan-
ism (lack of redundancies in the system being
exposed to challenging environment) and, there-

fore, will not help to uncover ‘‘the secrets of
negligible senescence.’’ The studies of negligible
senescence make sense, however, when the death
rates are also demonstrated to be negligible.

3. Reliability theory also persuades a re-evaluation of
the old belief that aging is somehow related to
limited economic or evolutionary investments in

systems longevity. The theory provides a com-
pletely opposite perspective on this issue—aging is
a direct consequence of investments into systems

reliability and durability through enhanced redun-
dancy. This is a significant statement, because it
helps to understand why the expression of aging

(differences in failure rates between the younger
and the older age groups) may be actually more
profound in more complicated redundant systems,
designed for higher durability.

4. During the life course the organisms are exhaust-
ing the reserve numbers of their cells (Gosden, 1985;
Herndon et al., 2002), losing reserve capacity (Bortz,

2002; Sehl and Yates, 2001), and this redundancy
depletion explains the observed ‘‘compensation law
of mortality’’ (mortality convergence at older ages)

as well as the observed late-life mortality decelera-
tion, leveling-off, and mortality plateaus.

5. Living organisms seem to be formed with a high

load of initial damage, and therefore their lifespan

and aging patterns may be sensitive to early-life

conditions that determine this initial damage load

during early development. The idea of early-life

programming of aging and longevity may have

important practical implications for develop-

ing early-life interventions promoting health and

longevity.

The theory also suggests that aging research should not

be limited to the studies of qualitative changes (like age

changes in gene expression), because changes in quantity

(numbers of cells and other functional elements) could

be an important driving force of aging process. In other

words, aging may be largely driven by a process of

redundancy loss.

The reliability theory predicts that a system may

deteriorate with age even if it is built from nonaging

elements with constant failure rate. The key issue here is

the system’s redundancy for irreplaceable elements, which

is responsible for the aging phenomenon. In other words,

each particular step of system destruction/deterioration

may seem to be apparently random (no aging, just

occasional failure by chance), but if a system failure
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requires a sequence of several such steps (not just a single

step of destruction), then the system as a whole may have

an aging behavior.

Why is this important? Because the significance of

beneficial health-promoting interventions is often under-

mined by claims that these interventions are not proven to

delay the process of aging itself, but instead simply delay

or ‘‘cover-up’’ some particular manifestations of aging.

In contrast to these pessimistic views, reliability theory

says that there may be no specific underlying elementary

‘‘aging process itself ’’—instead aging may be largely

a property of a redundant system as a whole, because it

has a network of destruction pathways, each being

associated with particular manifestations of aging (types

of failure). Therefore, we should not be discouraged by

only partial success of each particular intervention, but

instead we can appreciate an idea that we do have so

many opportunities to oppose aging in numerous

different ways.
Thus, the efforts to understand the routes and the early

stages of age-related degenerative diseases should not

be discarded as irrelevant to understanding the ‘‘true

biological aging.’’ On the contrary, the attempts to build

an intellectual firewall between biogerontological research

and clinical medicine are counterproductive. After all, the

main reason why people are really concerned about aging

is because it is related to health deterioration and

increased morbidity. The most important pathways of

age changes are those that make older people sick and

frail (Bortz, 2002).
Reliability theory suggests general answers to both the

‘‘why’’ and the ‘‘how’’ questions about aging. It explains

‘‘why’’ aging occurs by identifying the key determinant of

aging behavior—system redundancy in numbers of

irreplaceable elements. Reliability theory also explains

‘‘how’’ aging occurs, by focusing on the process of

redundancy loss over time as the major mechanism of

aging.
Ageing is a complex phenomenon (Sehl and Yates,

2001), and a holistic approach using reliability theory may

help to analyze, understand, and perhaps to control it.

We suggest, therefore, adding theoretical reliability

models of system failure in aging to the arsenal of metho-

dological approaches for the studying of human aging.
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